About the Project

sums%20or%20differences%20of%20squares

AdvancedHelp

(0.003 seconds)

1—10 of 42 matching pages

1: Bibliography K
β–Ί
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 2: 24.20 Tables
    §24.20 Tables
    β–ΊAbramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ⁒ ( 1 ) ⁒ 100 , n = 1 ⁒ ( 1 ) ⁒ 10 ; k = 1 k n , k = 1 ( 1 ) k 1 ⁒ k n , k = 0 ( 2 ⁒ k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ⁒ ( 2 ⁒ k + 1 ) n , n = 1 , 2 , , 18D. β–ΊWagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ⁒ ( 2 ) ⁒ 60 and n = 8 ⁒ ( 2 ) ⁒ 42 , respectively. …
    3: Bibliography C
    β–Ί
  • B. C. Carlson and J. FitzSimons (2000) Reduction theorems for elliptic integrands with the square root of two quadratic factors. J. Comput. Appl. Math. 118 (1-2), pp. 71–85.
  • β–Ί
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • β–Ί
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • β–Ί
  • I. Cherednik (1995) Macdonald’s evaluation conjectures and difference Fourier transform. Invent. Math. 122 (1), pp. 119–145.
  • β–Ί
  • R. C. Y. Chin and G. W. Hedstrom (1978) A dispersion analysis for difference schemes: Tables of generalized Airy functions. Math. Comp. 32 (144), pp. 1163–1170.
  • 4: 26.5 Lattice Paths: Catalan Numbers
    β–Ί
    Table 26.5.1: Catalan numbers.
    β–Ί β–Ίβ–Ίβ–Ί
    n C ⁑ ( n ) n C ⁑ ( n ) n C ⁑ ( n )
    6 132 13 7 42900 20 65641 20420
    β–Ί
    β–Ί
    26.5.2 n = 0 C ⁑ ( n ) ⁒ x n = 1 1 4 ⁒ x 2 ⁒ x , | x | < 1 4 .
    β–Ί
    26.5.3 C ⁑ ( n + 1 ) = k = 0 n C ⁑ ( k ) ⁒ C ⁑ ( n k ) ,
    β–Ί
    26.5.5 C ⁑ ( n + 1 ) = k = 0 n / 2 ( n 2 ⁒ k ) ⁒ 2 n 2 ⁒ k ⁒ C ⁑ ( k ) .
    5: 23.9 Laurent and Other Power Series
    β–Ί
    23.9.1 c n = ( 2 ⁒ n 1 ) ⁒ w 𝕃 βˆ– { 0 } w 2 ⁒ n , n = 2 , 3 , 4 , .
    β–Ί
    23.9.2 ⁑ ( z ) = 1 z 2 + n = 2 c n ⁒ z 2 ⁒ n 2 , 0 < | z | < | z 0 | ,
    β–Ί
    23.9.3 ΢ ⁑ ( z ) = 1 z n = 2 c n 2 ⁒ n 1 ⁒ z 2 ⁒ n 1 , 0 < | z | < | z 0 | .
    β–Ί
    c 2 = 1 20 ⁒ g 2 ⁑ ,
    β–Ί
    23.9.5 c n = 3 ( 2 ⁒ n + 1 ) ⁒ ( n 3 ) ⁒ m = 2 n 2 c m ⁒ c n m , n 4 .
    6: 8.17 Incomplete Beta Functions
    β–Ί
    8.17.24 I x ⁑ ( m , n ) = ( 1 x ) n ⁒ j = m ( n + j 1 j ) ⁒ x j , m , n positive integers; 0 x < 1 .
    7: 27.2 Functions
    β–ΊEuclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …It can be expressed as a sum over all primes p x : … β–Ίthe sum of the k th powers of the positive integers m n that are relatively prime to n . … β–Ίis the sum of the Ξ± th powers of the divisors of n , where the exponent Ξ± can be real or complex. … β–ΊTable 27.2.2 tabulates the Euler totient function Ο• ⁑ ( n ) , the divisor function d ⁑ ( n ) ( = Οƒ 0 ⁑ ( n ) ), and the sum of the divisors Οƒ ⁑ ( n ) ( = Οƒ 1 ⁑ ( n ) ), for n = 1 ⁒ ( 1 ) ⁒ 52 . …
    8: Bibliography M
    β–Ί
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • β–Ί
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • β–Ί
  • L. J. Mordell (1917) On the representation of numbers as a sum of 2 ⁒ r squares. Quarterly Journal of Math. 48, pp. 93–104.
  • β–Ί
  • M. E. Muldoon (1979) On the zeros of a cross-product of Bessel functions of different orders. Z. Angew. Math. Mech. 59 (6), pp. 272–273.
  • 9: 26.14 Permutations: Order Notation
    β–Ί
    26.14.1 inv ( Οƒ ) = 1 j < k n Οƒ ⁑ ( j ) > Οƒ ⁑ ( k ) 1 .
    β–ΊEquivalently, this is the sum over 1 j < n of the number of integers less than Οƒ ⁑ ( j ) that lie in positions to the right of the j th position: inv ( 35247816 ) = 2 + 3 + 1 + 1 + 2 + 2 + 0 = 11 . β–ΊThe major index is the sum of all positions that mark the first element of a descent: β–Ί
    26.14.2 maj ( Οƒ ) = 1 j < n Οƒ ⁑ ( j ) > Οƒ ⁑ ( j + 1 ) j .
    β–Ί
    26.14.3 Οƒ 𝔖 n q inv ( Οƒ ) = Οƒ 𝔖 n q maj ( Οƒ ) = j = 1 n 1 q j 1 q .
    10: 26.2 Basic Definitions
    β–ΊA partition of a nonnegative integer n is an unordered collection of positive integers whose sum is n . … β–ΊThe integers whose sum is n are referred to as the parts in the partition. … β–Ί
    Table 26.2.1: Partitions p ⁑ ( n ) .
    β–Ί β–Ίβ–Ίβ–Ί
    n p ⁑ ( n ) n p ⁑ ( n ) n p ⁑ ( n )
    3 3 20 627 37 21637
    β–Ί