# subtraction

(0.001 seconds)

## 1—10 of 30 matching pages

βΊThe conventional CMYK color wheel (not to be confused with the traditional Artist’s color wheel) places the additive colors (red, green, blue) and the subtractive colors (yellow, cyan, magenta) at multiples of 60 degrees. …
##### 2: 26.18 Counting Techniques
βΊ
26.18.1 $\left|S\setminus(A_{1}\cup A_{2}\cup\cdots\cup A_{n})\right|=\left|S\right|+% \sum_{t=1}^{n}(-1)^{t}\sum_{1\leq j_{1}
##### 3: 4.37 Inverse Hyperbolic Functions
βΊ
4.37.16 $\operatorname{arcsinh}z=\ln\left((z^{2}+1)^{1/2}+z\right),$ $z/i\in\mathbb{C}\setminus(-\infty,-1)\cup(1,\infty)$;
βΊ
4.37.19 $\operatorname{arccosh}z=\ln\left(\pm(z^{2}-1)^{1/2}+z\right),$ $z\in\mathbb{C}\setminus(-\infty,1)$,
βΊ
4.37.21 $\operatorname{arccosh}z=2\ln\left(\left(\frac{z+1}{2}\right)^{1/2}+\left(\frac% {z-1}{2}\right)^{1/2}\right),$ $z\in\mathbb{C}\setminus(-\infty,1)$;
βΊ
4.37.24 $\operatorname{arctanh}z=\tfrac{1}{2}\ln\left(\frac{1+z}{1-z}\right),$ $z\in\mathbb{C}\setminus(-\infty,-1]\cup[1,\infty)$;
##### 4: Mathematical Introduction
βΊ βΊβΊβΊ
 $(a,b]$ or $[a,b)$ half-closed intervals. … set subtraction. …
##### 5: 23.2 Definitions and Periodic Properties
βΊ
23.2.4 $\wp\left(z\right)=\frac{1}{z^{2}}+\sum_{w\in\mathbb{L}\setminus\{0\}}\left(% \frac{1}{(z-w)^{2}}-\frac{1}{w^{2}}\right),$
βΊ
23.2.5 $\zeta\left(z\right)=\frac{1}{z}+\sum_{w\in\mathbb{L}\setminus\{0\}}\left(\frac% {1}{z-w}+\frac{1}{w}+\frac{z}{w^{2}}\right),$
βΊ
23.2.6 $\sigma\left(z\right)=z\prod_{w\in\mathbb{L}\setminus\{0\}}\left(\left(1-\frac{% z}{w}\right)\exp\left(\frac{z}{w}+\frac{z^{2}}{2w^{2}}\right)\right).$
##### 6: 25.12 Polylogarithms
βΊ βΊ
25.12.3 $\operatorname{Li}_{2}\left(z\right)+\operatorname{Li}_{2}\left(\frac{z}{z-1}% \right)=-\frac{1}{2}(\ln\left(1-z\right))^{2},$ $z\in\mathbb{C}\setminus[1,\infty)$.
βΊ
##### 7: 23.9 Laurent and Other Power Series
βΊ
23.9.1 $c_{n}=(2n-1)\sum_{w\in\mathbb{L}\setminus\{0\}}w^{-2n},$ $n=2,3,4,\dots$.
##### 9: 4.23 Inverse Trigonometric Functions
βΊ
4.23.19 $\operatorname{arcsin}z=-i\ln\left((1-z^{2})^{1/2}+iz\right),$ $z\in\mathbb{C}\setminus(-\infty,-1)\cup(1,\infty)$;
βΊ
4.23.22 $\operatorname{arccos}z=\tfrac{1}{2}\pi+i\ln\left((1-z^{2})^{1/2}+iz\right),$ $z\in\mathbb{C}\setminus(-\infty,-1)\cup(1,\infty)$;
βΊ
4.23.23 $\operatorname{arccos}z=-2i\ln\left(\left(\frac{1+z}{2}\right)^{1/2}+i\left(% \frac{1-z}{2}\right)^{1/2}\right),$ $z\in\mathbb{C}\setminus(-\infty,-1)\cup(1,\infty)$;
βΊ
4.23.26 $\operatorname{arctan}z=\frac{i}{2}\ln\left(\frac{i+z}{i-z}\right),$ $z/i\in\mathbb{C}\setminus(-\infty,-1]\cup[1,\infty)$;