About the Project

strictly%20monotonic

AdvancedHelp

(0.002 seconds)

11—20 of 127 matching pages

11: 2.2 Transcendental Equations
Let f ( x ) be continuous and strictly increasing when a < x < and …
12: 10.37 Inequalities; Monotonicity
§10.37 Inequalities; Monotonicity
13: 21.1 Special Notation
g , h positive integers.
𝛀 g × g complex, symmetric matrix with 𝛀 strictly positive definite, i.e., a Riemann matrix.
14: 3.8 Nonlinear Equations
  • (a)

    f ( x 0 ) f ′′ ( x 0 ) > 0 and f ( x ) , f ′′ ( x ) do not change sign between x 0 and ξ (monotonic convergence).

  • (b)

    f ( x 0 ) f ′′ ( x 0 ) < 0 , f ( x ) , f ′′ ( x ) do not change sign in the interval ( x 0 , x 1 ) , and ξ [ x 0 , x 1 ] (monotonic convergence after the first iteration).

  • 3.8.15 p ( x ) = ( x 1 ) ( x 2 ) ( x 20 )
    Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    15: 18.16 Zeros
    Then θ n , m is strictly increasing in α and strictly decreasing in β ; furthermore, if α = β , then θ n , m is strictly increasing in α . …
    16: 8 Incomplete Gamma and Related
    Functions
    17: 28 Mathieu Functions and Hill’s Equation
    18: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • S. Koumandos and M. Lamprecht (2010) Some completely monotonic functions of positive order. Math. Comp. 79 (271), pp. 1697–1707.
  • 19: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 20: 23 Weierstrass Elliptic and Modular
    Functions