squares and products
(0.000 seconds)
1—10 of 41 matching pages
1: 1.1 Special Notation
…
►
►
…
real variables. | |
… | |
inner, or scalar, product for real or complex vectors or functions. | |
… | |
inverse of the square matrix | |
… | |
determinant of the square matrix | |
trace of the square matrix | |
… | |
adjoint of the square matrix | |
… |
2: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
…
►
1.18.11
►Functions for which are identified with each other.
The space becomes a separable Hilbert space with inner product
…
►
1.18.13
,
…
►
1.18.52
, ,
…
3: 1.2 Elementary Algebra
…
►
§1.2(vi) Square Matrices
… ► ►Special Forms of Square Matrices
… ►Norms of Square Matrices
… ►Non-Defective Square Matrices
…4: 20.12 Mathematical Applications
…
►For applications of to problems involving sums of squares of integers see §27.13(iv), and for extensions see Estermann (1959), Serre (1973, pp. 106–109), Koblitz (1993, pp. 176–177), and McKean and Moll (1999, pp. 142–143).
►For applications of Jacobi’s triple product (20.5.9) to Ramanujan’s function and Euler’s pentagonal numbers see Hardy and Wright (1979, pp. 132–160) and McKean and Moll (1999, pp. 143–145).
…
5: 26.12 Plane Partitions
…
►
26.12.9
…
►
26.12.10
…
►
26.12.11
…
►
26.12.13
…
►where is the sum of the squares of the divisors of .
…
6: 27.6 Divisor Sums
…
►
27.6.1
…
►
27.6.2
.
►Generating functions, Euler products, and Möbius inversion are used to evaluate many sums extended over divisors.
…
7: 1.3 Determinants, Linear Operators, and Spectral Expansions
…
►The determinant of an upper or lower triangular, or diagonal, square matrix is the product of the diagonal elements .
…
8: 4.35 Identities
…
►
§4.35(ii) Squares and Products
…9: 18.39 Applications in the Physical Sciences
…
►All are written in the same form as the product of three factors: the square root of a weight function , the corresponding OP or EOP, and constant factors ensuring unit normalization.
…
10: 10.65 Power Series
…
►