square-integrable function
♦
6 matching pages ♦
(0.002 seconds)
6 matching pages
1: 1.4 Calculus of One Variable
2: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
…
►Let
or
or
or
be a (possibly infinite, or semi-infinite)
interval in
.
For a Lebesgue–Stieltjes measure
on
let
be the space of all Lebesgue–Stieltjes measurable complex-valued functions on
which are square integrable
with respect to
,
…
►
1.18.13
,
►
1.18.14
,
…
►
1.18.52
,
,
…
►
1.18.65
.
…
3: 28.30 Expansions in Series of Eigenfunctions
…
►Then every continuous -periodic function
whose second derivative is square-integrable over the interval can be expanded in a uniformly and absolutely convergent series
…
4: 30.4 Functions of the First Kind
5: 33.22 Particle Scattering and Atomic and Molecular Spectra
…
►
•
…
►
§33.22(i) Schrödinger Equation
… ►§33.22(iv) Klein–Gordon and Dirac Equations
… ► … ►Eigenstates using complex-rotated coordinates , so that resonances have square-integrable eigenfunctions. See for example Halley et al. (1993).
6: 1.8 Fourier Series
…
►Let be an absolutely integrable function of period , and continuous except at a finite number of points in any bounded interval.
…
►