About the Project

spherical (or spherical polar)

AdvancedHelp

(0.001 seconds)

11—20 of 84 matching pages

11: 10.51 Recurrence Relations and Derivatives
β–ΊLet f n ⁑ ( z ) denote any of 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗁 n ( 1 ) ⁑ ( z ) , or 𝗁 n ( 2 ) ⁑ ( z ) . … β–Ί
n ⁒ f n 1 ⁑ ( z ) ( n + 1 ) ⁒ f n + 1 ⁑ ( z ) = ( 2 ⁒ n + 1 ) ⁒ f n ⁑ ( z ) , n = 1 , 2 , ,
β–Ί
f n ⁑ ( z ) = f n + 1 ⁑ ( z ) + ( n / z ) ⁒ f n ⁑ ( z ) , n = 0 , 1 , .
β–ΊLet g n ⁑ ( z ) denote 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 2 ) ⁑ ( z ) , or ( 1 ) n 𝗄 n ⁑ ( z ) . Then …
12: 10.57 Uniform Asymptotic Expansions for Large Order
§10.57 Uniform Asymptotic Expansions for Large Order
β–ΊAsymptotic expansions for 𝗃 n ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗒 n ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗁 n ( 1 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗁 n ( 2 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗂 n ( 1 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , and 𝗄 n ⁑ ( ( n + 1 2 ) ⁒ z ) as n that are uniform with respect to z can be obtained from the results given in §§10.20 and 10.41 by use of the definitions (10.47.3)–(10.47.7) and (10.47.9). Subsequently, for 𝗂 n ( 2 ) ⁑ ( ( n + 1 2 ) ⁒ z ) the connection formula (10.47.11) is available. β–ΊFor the corresponding expansion for 𝗃 n ⁑ ( ( n + 1 2 ) ⁒ z ) use β–Ί
10.57.1 𝗃 n ⁑ ( ( n + 1 2 ) ⁒ z ) = Ο€ 1 2 ( ( 2 ⁒ n + 1 ) ⁒ z ) 1 2 ⁒ J n + 1 2 ⁑ ( ( n + 1 2 ) ⁒ z ) Ο€ 1 2 ( ( 2 ⁒ n + 1 ) ⁒ z ) 3 2 ⁒ J n + 1 2 ⁑ ( ( n + 1 2 ) ⁒ z ) .
13: 10.58 Zeros
§10.58 Zeros
β–ΊFor n 0 the m th positive zeros of 𝗃 n ⁑ ( x ) , 𝗃 n ⁑ ( x ) , 𝗒 n ⁑ ( x ) , and 𝗒 n ⁑ ( x ) are denoted by a n , m , a n , m , b n , m , and b n , m , respectively, except that for n = 0 we count x = 0 as the first zero of 𝗃 0 ⁑ ( x ) . … β–Ί
𝗃 n ⁑ ( a n , m ) = Ο€ 2 ⁒ j n + 1 2 , m ⁒ J n + 1 2 ⁑ ( j n + 1 2 , m ) ,
β–Ί
𝗒 n ⁑ ( b n , m ) = Ο€ 2 ⁒ y n + 1 2 , m ⁒ Y n + 1 2 ⁑ ( y n + 1 2 , m ) .
14: 10.1 Special Notation
β–ΊThe main functions treated in this chapter are the Bessel functions J Ξ½ ⁑ ( z ) , Y Ξ½ ⁑ ( z ) ; Hankel functions H Ξ½ ( 1 ) ⁑ ( z ) , H Ξ½ ( 2 ) ⁑ ( z ) ; modified Bessel functions I Ξ½ ⁑ ( z ) , K Ξ½ ⁑ ( z ) ; spherical Bessel functions 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗁 n ( 1 ) ⁑ ( z ) , 𝗁 n ( 2 ) ⁑ ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 2 ) ⁑ ( z ) , 𝗄 n ⁑ ( z ) ; Kelvin functions ber Ξ½ ⁑ ( x ) , bei Ξ½ ⁑ ( x ) , ker Ξ½ ⁑ ( x ) , kei Ξ½ ⁑ ( x ) . For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. … β–ΊAbramowitz and Stegun (1964): j n ⁑ ( z ) , y n ⁑ ( z ) , h n ( 1 ) ⁑ ( z ) , h n ( 2 ) ⁑ ( z ) , for 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗁 n ( 1 ) ⁑ ( z ) , 𝗁 n ( 2 ) ⁑ ( z ) , respectively, when n 0 . … β–ΊFor older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
15: 10.54 Integral Representations
§10.54 Integral Representations
β–Ί
10.54.2 𝗃 n ⁑ ( z ) = ( i ) n 2 ⁒ 0 Ο€ e i ⁒ z ⁒ cos ⁑ ΞΈ ⁒ P n ⁑ ( cos ⁑ ΞΈ ) ⁒ sin ⁑ ΞΈ ⁒ d ΞΈ .
β–Ί
10.54.3 𝗄 n ⁑ ( z ) = Ο€ 2 ⁒ 1 e z ⁒ t ⁒ P n ⁑ ( t ) ⁒ d t , | ph ⁑ z | < 1 2 ⁒ Ο€ .
β–Ί
𝗁 n ( 1 ) ⁑ ( z ) = ( i ) n + 1 Ο€ ⁒ i ⁒ ( 1 + ) e i ⁒ z ⁒ t ⁒ Q n ⁑ ( t ) ⁒ d t ,
β–ΊFor the Legendre polynomial P n and the associated Legendre function Q n see §§18.3 and 14.21(i), with ΞΌ = 0 and Ξ½ = n . …
16: 6.10 Other Series Expansions
β–Ί
§6.10(ii) Expansions in Series of Spherical Bessel Functions
β–Ί
6.10.4 Si ⁑ ( z ) = z ⁒ n = 0 ( 𝗃 n ⁑ ( 1 2 ⁒ z ) ) 2 ,
β–Ί
6.10.5 Cin ⁑ ( z ) = n = 1 a n ⁒ ( 𝗃 n ⁑ ( 1 2 ⁒ z ) ) 2 ,
β–Ί
6.10.6 Ei ⁑ ( x ) = Ξ³ + ln ⁑ | x | + n = 0 ( 1 ) n ⁒ ( x a n ) ⁒ ( 𝗂 n ( 1 ) ⁑ ( 1 2 ⁒ x ) ) 2 , x 0 ,
β–Ί
6.10.8 Ein ⁑ ( z ) = z ⁒ e z / 2 ⁒ ( 𝗂 0 ( 1 ) ⁑ ( 1 2 ⁒ z ) + n = 1 2 ⁒ n + 1 n ⁒ ( n + 1 ) ⁒ 𝗂 n ( 1 ) ⁑ ( 1 2 ⁒ z ) ) .
17: 10.73 Physical Applications
β–Ίβ–Ί
§10.73(ii) Spherical Bessel Functions
β–ΊThe functions 𝗃 n ⁑ ( x ) , 𝗒 n ⁑ ( x ) , 𝗁 n ( 1 ) ⁑ ( x ) , and 𝗁 n ( 2 ) ⁑ ( x ) arise in the solution (again by separation of variables) of the Helmholtz equation in spherical coordinates ρ , ΞΈ , Ο• 1.5(ii)): …With the spherical harmonic Y β„“ , m ⁑ ( ΞΈ , Ο• ) defined as in §14.30(i), the solutions are of the form f = g β„“ ⁒ ( k ⁒ ρ ) ⁒ Y β„“ , m ⁑ ( ΞΈ , Ο• ) with g β„“ = 𝗃 β„“ , 𝗒 β„“ , 𝗁 β„“ ( 1 ) , or 𝗁 β„“ ( 2 ) , depending on the boundary conditions. Accordingly, the spherical Bessel functions appear in all problems in three dimensions with spherical symmetry involving the scattering of electromagnetic radiation. …
18: 10.59 Integrals
§10.59 Integrals
β–Ί
10.59.1 e i ⁒ b ⁒ t ⁒ 𝗃 n ⁑ ( t ) ⁒ d t = { Ο€ ⁒ i n ⁒ P n ⁑ ( b ) , 1 < b < 1 , 1 2 ⁒ Ο€ ⁒ ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
β–Ίwhere P n is the Legendre polynomial (§18.3). β–ΊFor an integral representation of the Dirac delta in terms of a product of spherical Bessel functions of the first kind see §1.17(ii), and for a generalization see Maximon (1991). …
19: 30.10 Series and Integrals
β–ΊFor expansions in products of spherical Bessel functions, see Flammer (1957, Chapter 6).
20: 7.6 Series Expansions
β–Ί
§7.6(ii) Expansions in Series of Spherical Bessel Functions
β–Ί
7.6.8 erf ⁑ z = 2 ⁒ z Ο€ ⁒ n = 0 ( 1 ) n ⁒ ( 𝗂 2 ⁒ n ( 1 ) ⁑ ( z 2 ) 𝗂 2 ⁒ n + 1 ( 1 ) ⁑ ( z 2 ) ) ,
β–Ί
7.6.9 erf ⁑ ( a ⁒ z ) = 2 ⁒ z Ο€ ⁒ e ( 1 2 a 2 ) ⁒ z 2 ⁒ n = 0 T 2 ⁒ n + 1 ⁑ ( a ) ⁒ 𝗂 n ( 1 ) ⁑ ( 1 2 ⁒ z 2 ) , 1 a 1 .
β–Ί
7.6.10 C ⁑ ( z ) = z ⁒ n = 0 𝗃 2 ⁒ n ⁑ ( 1 2 ⁒ Ο€ ⁒ z 2 ) ,
β–Ί
7.6.11 S ⁑ ( z ) = z ⁒ n = 0 𝗃 2 ⁒ n + 1 ⁑ ( 1 2 ⁒ Ο€ ⁒ z 2 ) .