About the Project

spherical%20polar%20coordinates

AdvancedHelp

(0.003 seconds)

1—10 of 195 matching pages

1: 14.30 Spherical and Spheroidal Harmonics
§14.30(i) Definitions
As an example, Laplace’s equation 2 W = 0 in spherical coordinates1.5(ii)): … Here, in spherical coordinates, L 2 is the squared angular momentum operator: …
2: 10.73 Physical Applications
See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). …
§10.73(ii) Spherical Bessel Functions
The functions 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗁 n ( 1 ) ( x ) , and 𝗁 n ( 2 ) ( x ) arise in the solution (again by separation of variables) of the Helmholtz equation in spherical coordinates ρ , θ , ϕ 1.5(ii)): …Accordingly, the spherical Bessel functions appear in all problems in three dimensions with spherical symmetry involving the scattering of electromagnetic radiation. …
3: 10.75 Tables
§10.75(ix) Spherical Bessel Functions, Modified Spherical Bessel Functions, and their Derivatives
  • The main tables in Abramowitz and Stegun (1964, Chapter 10) give 𝗃 n ( x ) , 𝗒 n ( x ) n = 0 ( 1 ) 8 , x = 0 ( .1 ) 10 , 5–8S; 𝗃 n ( x ) , 𝗒 n ( x ) n = 0 ( 1 ) 20 ( 10 ) 50 , 100, x = 1 , 2 , 5 , 10 , 50 , 100 , 10S; 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , n = 0 , 1 , 2 , x = 0 ( .1 ) 5 , 4–9D; 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100, x = 1 , 2 , 5 , 10 , 50 , 100 , 10S. (For the notation see §10.1 and §10.47(ii).)

  • Zhang and Jin (1996, pp. 296–305) tabulates 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗒 n ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; x 𝗃 n ( x ) , ( x 𝗃 n ( x ) ) , x 𝗒 n ( x ) , ( x 𝗒 n ( x ) ) (Riccati–Bessel functions and their derivatives), n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; real and imaginary parts of 𝗃 n ( z ) , 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗒 n ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) , 𝗄 n ( z ) , n = 0 ( 1 ) 15 , 20(10)50, 100, z = 4 + 2 i , 20 + 10 i , 8S. (For the notation replace j , y , i , k by 𝗃 , 𝗒 , 𝗂 ( 1 ) , 𝗄 , respectively.)

  • §10.75(x) Zeros and Associated Values of Derivatives of Spherical Bessel Functions
  • Olver (1960) tabulates a n , m , 𝗃 n ( a n , m ) , b n , m , 𝗒 n ( b n , m ) , n = 1 ( 1 ) 20 , m = 1 ( 1 ) 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n .

  • 4: 20 Theta Functions
    Chapter 20 Theta Functions
    5: 10.55 Continued Fractions
    §10.55 Continued Fractions
    For continued fractions for 𝗃 n + 1 ( z ) / 𝗃 n ( z ) and 𝗂 n + 1 ( 1 ) ( z ) / 𝗂 n ( 1 ) ( z ) see Cuyt et al. (2008, pp. 350, 353, 362, 363, 367–369).
    6: 18.39 Applications in the Physical Sciences
    Now use spherical coordinates (1.5.16) with r instead of ρ , and assume the potential V to be radial. …By (1.5.17) the first term in (18.39.21), which is the quantum kinetic energy operator T e , can be written in spherical coordinates r , θ , ϕ as … …
    a) Spherical Radial Coulomb Wave Functions Expressed in terms of Laguerre OP’s
    c) Spherical Radial Coulomb Wave Functions
    7: 10.48 Graphs
    §10.48 Graphs
    See accompanying text
    Figure 10.48.5: 𝗂 0 ( 1 ) ( x ) , 𝗂 0 ( 2 ) ( x ) , 𝗄 0 ( x ) , 0 x 4 . Magnify
    See accompanying text
    Figure 10.48.6: 𝗂 1 ( 1 ) ( x ) , 𝗂 1 ( 2 ) ( x ) , 𝗄 1 ( x ) , 0 x 4 . Magnify
    See accompanying text
    Figure 10.48.7: 𝗂 5 ( 1 ) ( x ) , 𝗂 5 ( 2 ) ( x ) , 𝗄 5 ( x ) , 0 x 8 . Magnify
    8: 1.5 Calculus of Two or More Variables
    §1.5(ii) Coordinate Systems
    Polar Coordinates
    Cylindrical Coordinates
    Spherical Coordinates
    For applications and other coordinate systems see §§12.17, 14.19(i), 14.30(iv), 28.32, 29.18, 30.13, 30.14. …
    9: 10.52 Limiting Forms
    §10.52 Limiting Forms
    10.52.1 𝗃 n ( z ) , 𝗂 n ( 1 ) ( z ) z n / ( 2 n + 1 ) !! ,
    𝗁 n ( 1 ) ( z ) i n 1 z 1 e i z ,
    10: 10.50 Wronskians and Cross-Products
    §10.50 Wronskians and Cross-Products
    𝒲 { 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) } = 2 i z 2 .
    𝒲 { 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) } = ( 1 ) n + 1 z 2 ,
    𝒲 { 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) } = 𝒲 { 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) } = 1 2 π z 2 .
    Results corresponding to (10.50.3) and (10.50.4) for 𝗂 n ( 1 ) ( z ) and 𝗂 n ( 2 ) ( z ) are obtainable via (10.47.12).