About the Project

spherical trigonometry

AdvancedHelp

(0.001 seconds)

1—10 of 85 matching pages

1: 14.30 Spherical and Spheroidal Harmonics
§14.30(i) Definitions
§14.30(iii) Sums
Distributional Completeness
2: 22.18 Mathematical Applications
Discussion of parametrization of the angles of spherical trigonometry in terms of Jacobian elliptic functions is given in Greenhill (1959, p. 131) and Lawden (1989, §4.4). …
3: 10.55 Continued Fractions
§10.55 Continued Fractions
For continued fractions for 𝗃 n + 1 ( z ) / 𝗃 n ( z ) and 𝗂 n + 1 ( 1 ) ( z ) / 𝗂 n ( 1 ) ( z ) see Cuyt et al. (2008, pp. 350, 353, 362, 363, 367–369).
4: 10.48 Graphs
§10.48 Graphs
See accompanying text
Figure 10.48.5: 𝗂 0 ( 1 ) ( x ) , 𝗂 0 ( 2 ) ( x ) , 𝗄 0 ( x ) , 0 x 4 . Magnify
See accompanying text
Figure 10.48.6: 𝗂 1 ( 1 ) ( x ) , 𝗂 1 ( 2 ) ( x ) , 𝗄 1 ( x ) , 0 x 4 . Magnify
See accompanying text
Figure 10.48.7: 𝗂 5 ( 1 ) ( x ) , 𝗂 5 ( 2 ) ( x ) , 𝗄 5 ( x ) , 0 x 8 . Magnify
5: 10.52 Limiting Forms
§10.52 Limiting Forms
10.52.1 𝗃 n ( z ) , 𝗂 n ( 1 ) ( z ) z n / ( 2 n + 1 ) !! ,
𝗁 n ( 1 ) ( z ) i n 1 z 1 e i z ,
6: 10.50 Wronskians and Cross-Products
§10.50 Wronskians and Cross-Products
𝒲 { 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) } = 2 i z 2 .
𝒲 { 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) } = ( 1 ) n + 1 z 2 ,
𝒲 { 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) } = 𝒲 { 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) } = 1 2 π z 2 .
Results corresponding to (10.50.3) and (10.50.4) for 𝗂 n ( 1 ) ( z ) and 𝗂 n ( 2 ) ( z ) are obtainable via (10.47.12).
7: 10.47 Definitions and Basic Properties
Equation (10.47.1)
Equation (10.47.2)
§10.47(iv) Interrelations
8: 10.49 Explicit Formulas
§10.49(i) Unmodified Functions
§10.49(ii) Modified Functions
§10.49(iii) Rayleigh’s Formulas
§10.49(iv) Sums or Differences of Squares
( 𝗂 0 ( 1 ) ( z ) ) 2 ( 𝗂 0 ( 2 ) ( z ) ) 2 = z 2 ,
9: 10.53 Power Series
§10.53 Power Series
10.53.3 𝗂 n ( 1 ) ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.4 𝗂 n ( 2 ) ( z ) = ( 1 ) n z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
For 𝗁 n ( 1 ) ( z ) and 𝗁 n ( 2 ) ( z ) combine (10.47.10), (10.53.1), and (10.53.2). For 𝗄 n ( z ) combine (10.47.11), (10.53.3), and (10.53.4).
10: 10.56 Generating Functions
§10.56 Generating Functions
10.56.1 cos z 2 2 z t z = cos z z + n = 1 t n n ! 𝗃 n 1 ( z ) ,
10.56.2 sin z 2 2 z t z = sin z z + n = 1 t n n ! 𝗒 n 1 ( z ) .
10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,