About the Project

spherical harmonics

AdvancedHelp

(0.001 seconds)

1—10 of 24 matching pages

1: 14.30 Spherical and Spheroidal Harmonics
Y l , m ( θ , ϕ ) are known as spherical harmonics. … … The special class of spherical harmonics Y l , m ( θ , ϕ ) , defined by (14.30.1), appear in many physical applications. … In the quantization of angular momentum the spherical harmonics Y l , m ( θ , ϕ ) are normalized solutions of the eigenvalue equations …
2: 34.3 Basic Properties: 3 j Symbol
§34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
For the polynomials P l see §18.3, and for the function Y l , m see §14.30. …
34.3.20 Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) = l , m ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l + 1 ) 4 π ) 1 2 ( l 1 l 2 l m 1 m 2 m ) Y l , m ( θ , ϕ ) ¯ ( l 1 l 2 l 0 0 0 ) ,
34.3.22 0 2 π 0 π Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) Y l 3 , m 3 ( θ , ϕ ) sin θ d θ d ϕ = ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l 3 + 1 ) 4 π ) 1 2 ( l 1 l 2 l 3 0 0 0 ) ( l 1 l 2 l 3 m 1 m 2 m 3 ) .
3: 37.11 Spherical Harmonics
§37.11 Spherical Harmonics
Zonal Functions
Jacobi Polynomials as Spherical Harmonics
Fourier Transform Involving Spherical Harmonics
4: 1.17 Integral and Series Representations of the Dirac Delta
Spherical Harmonics14.30)
1.17.25 δ ( cos θ 1 cos θ 2 ) δ ( ϕ 1 ϕ 2 ) = = 0 m = Y , m ( θ 1 , ϕ 1 ) Y , m ( θ 2 , ϕ 2 ) ¯ .
5: 29.18 Mathematical Applications
§29.18(iii) Spherical and Ellipsoidal Harmonics
6: 18.39 Applications in the Physical Sciences
The eigenfunctions of L 2 are the spherical harmonics Y l , m l ( θ , ϕ ) with eigenvalues 2 l ( l + 1 ) , each with degeneracy 2 l + 1 as m l = l , l + 1 , , l . … …
18.39.24 Ψ n , l , m l ( r , θ , ϕ ) = R n , l ( r ) Y l , m l ( θ , ϕ ) .
7: 18.38 Mathematical Applications
Zonal Spherical Harmonics
Ultraspherical polynomials are zonal spherical harmonics. …
8: 37.12 Orthogonal Polynomials on Quadratic Surfaces
Let { Y m } = 1 N m d be an orthonormal basis of spherical harmonics in m 0 , d ; for example, an enumeration of the basis in (37.11.18). …
37.12.2 S m , n ( x , t ) = q n m ( m ) ( t ) ϕ ( t ) m Y m ( 𝐱 ϕ ( t ) ) , 0 m n ,   1 N m d .
§37.12(ii) Jacobi Polynomials on the Conic Surface
9: 37.13 General Orthogonal Polynomials of d Variables
37.13.8 R Y , k , n ( r ξ ) = p k ( n 2 k + 1 2 d 1 ) ( r 2 ) r n 2 k Y ( ξ ) , 0 k 1 2 n , Y n 2 k 0 , d , r 0 , ξ 𝕊 d 1 .
If the spherical harmonics Y in (37.13.8) are chosen as orthogonal bases of n 2 k 0 , d ( 0 k 1 2 n ) then the corresponding polynomials R Y , k , n form an orthogonal basis of 𝒱 n d . …
37.13.9 d R Y 1 , k , n ( 𝐱 ) R Y 2 , k , n ( 𝐱 ) W ( 𝐱 ) d 𝐱 = 1 2 ω d 0 ( p k ( n 2 k + 1 2 d 1 ) ( x ) ) 2 w ( x ) x n 2 k + 1 2 d 1 d x Y 1 , Y 2 𝕊 d 1 , 0 k 1 2 n , Y 1 , Y 2 n 2 k 0 , d .
10: 37.17 Hermite Polynomials on d
37.17.7 𝒱 n ( d ) = k = 0 1 2 n { S Y , k , n } Y n 2 k 0 , d ,
37.17.8 S Y , k , n ( r ξ ) = L k ( n 2 k + 1 2 d 1 ) ( r 2 ) r n 2 k Y ( ξ ) , 0 k 1 2 n , Y n 2 k 0 , d , r 0 , ξ 𝕊 d 1 .
37.17.13 lim α α 2 k R Y , k , n α ( α 1 2 𝐱 ) = ( 1 ) k k ! S Y , k , n ( 𝐱 ) , 0 k 1 2 n , Y n 2 k 0 , d .