About the Project

special%20values%20of%20the%20variable

AdvancedHelp

(0.005 seconds)

7 matching pages

1: 25.12 Polylogarithms
Other notations and names for Li 2 ( z ) include S 2 ( z ) (Kölbig et al. (1970)), Spence function Sp ( z ) (’t Hooft and Veltman (1979)), and L 2 ( z ) (Maximon (2003)). …
See accompanying text
Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . Principal value. … Magnify 3D Help
For other values of z , Li s ( z ) is defined by analytic continuation. … The special case z = 1 is the Riemann zeta function: ζ ( s ) = Li s ( 1 ) . …
2: 5.11 Asymptotic Expansions
Wrench (1968) gives exact values of g k up to g 20 . Spira (1971) corrects errors in Wrench’s results and also supplies exact and 45D values of g k for k = 21 , 22 , , 30 . … uniformly for bounded real values of x . …
5.11.12 Γ ( z + a ) Γ ( z + b ) z a b ,
5.11.13 Γ ( z + a ) Γ ( z + b ) z a b k = 0 G k ( a , b ) z k ,
3: Bibliography G
  • F. G. Garvan and M. E. H. Ismail (Eds.) (2001) Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Developments in Mathematics, Vol. 4, Kluwer Academic Publishers, Dordrecht.
  • W. Gautschi (1975) Computational Methods in Special Functions – A Survey. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), R. A. Askey (Ed.), pp. 1–98. Math. Res. Center, Univ. Wisconsin Publ., No. 35.
  • W. Gautschi (1997b) The Computation of Special Functions by Linear Difference Equations. In Advances in Difference Equations (Veszprém, 1995), S. Elaydi, I. Győri, and G. Ladas (Eds.), pp. 213–243.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 4: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • Inverse Symbolic Calculator (website) Centre for Experimental and Constructive Mathematics, Simon Fraser University, Canada.
  • M. E. H. Ismail and E. Koelink (Eds.) (2005) Theory and Applications of Special Functions. Developments in Mathematics, Vol. 13, Springer, New York.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.
  • 5: Bibliography L
  • H. T. Lau (1995) A Numerical Library in C for Scientists and Engineers. CRC Press, Boca Raton, FL.
  • H. T. Lau (2004) A Numerical Library in Java for Scientists & Engineers. Chapman & Hall/CRC, Boca Raton, FL.
  • N. N. Lebedev (1965) Special Functions and Their Applications. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • D. W. Lozier and F. W. J. Olver (1994) Numerical Evaluation of Special Functions. In Mathematics of Computation 1943–1993: A Half-Century of Computational Mathematics (Vancouver, BC, 1993), Proc. Sympos. Appl. Math., Vol. 48, pp. 79–125.
  • 6: 26.14 Permutations: Order Notation
    26.14.4 n , k = 0 n k x k t n n ! = 1 x exp ( ( x 1 ) t ) x , | x | < 1 , | t | < 1 .
    26.14.5 k = 0 n 1 n k ( x + k n ) = x n .
    §26.14(iv) Special Values
    7: Bibliography K
  • E. G. Kalnins, W. Miller, G. F. Torres del Castillo, and G. C. Williams (2000) Special Functions and Perturbations of Black Holes. In Special Functions (Hong Kong, 1999), pp. 140–151.
  • N. D. Kazarinoff (1988) Special functions and the Bieberbach conjecture. Amer. Math. Monthly 95 (8), pp. 689–696.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • T. H. Koornwinder (1975c) Two-variable Analogues of the Classical Orthogonal Polynomials. In Theory and Application of Special Functions, R. A. Askey (Ed.), pp. 435–495.