About the Project

special%20distributions

AdvancedHelp

(0.002 seconds)

1—10 of 11 matching pages

1: Foreword
That 1046-page tome proved to be an invaluable reference for the many scientists and engineers who use the special functions of applied mathematics in their day-to-day work, so much so that it became the most widely distributed and most highly cited NIST publication in the first 100 years of the institution’s existence. 22 2 D. R. Lide (ed.), A Century of Excellence in Measurement, Standards, and Technology, CRC Press, 2001. The success of the original handbook, widely referred to as “Abramowitz and Stegun” (“A&S”), derived not only from the fact that it provided critically useful scientific data in a highly accessible format, but also because it served to standardize definitions and notations for special functions. … However, we have also seen the birth of a new age of computing technology, which has not only changed how we utilize special functions, but also how we communicate technical information. … November 20, 2009 …
2: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • J. Baik, P. Deift, and K. Johansson (1999) On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (4), pp. 1119–1178.
  • L. E. Ballentine and S. M. McRae (1998) Moment equations for probability distributions in classical and quantum mechanics. Phys. Rev. A 58 (3), pp. 1799–1809.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • C. Bingham, T. Chang, and D. Richards (1992) Approximating the matrix Fisher and Bingham distributions: Applications to spherical regression and Procrustes analysis. J. Multivariate Anal. 41 (2), pp. 314–337.
  • 3: 3.8 Nonlinear Equations
    For fixed-point methods for computing zeros of special functions, see Segura (2002), Gil and Segura (2003), and Gil et al. (2007a, Chapter 7). For describing the distribution of complex zeros of solutions of linear homogeneous second-order differential equations by methods based on the Liouville–Green (WKB) approximation, see Segura (2013). …
    3.8.15 p ( x ) = ( x 1 ) ( x 2 ) ( x 20 )
    Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    4: Bibliography P
  • J. K. Patel and C. B. Read (1982) Handbook of the Normal Distribution. Statistics: Textbooks and Monographs, Vol. 40, Marcel Dekker Inc., New York.
  • P. C. B. Phillips (1986) The exact distribution of the Wald statistic. Econometrica 54 (4), pp. 881–895.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens and M. Branders (1985) A survey of numerical methods for the computation of Bessel function integrals. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 249–265.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1986b) Integrals and Series: Special Functions, Vol. 2. Gordon & Breach Science Publishers, New York.
  • 5: Bibliography K
  • E. G. Kalnins, W. Miller, G. F. Torres del Castillo, and G. C. Williams (2000) Special Functions and Perturbations of Black Holes. In Special Functions (Hong Kong, 1999), pp. 140–151.
  • N. D. Kazarinoff (1988) Special functions and the Bieberbach conjecture. Amer. Math. Monthly 95 (8), pp. 689–696.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • S. H. Khamis (1965) Tables of the Incomplete Gamma Function Ratio: The Chi-square Integral, the Poisson Distribution. Justus von Liebig Verlag, Darmstadt (German, English).
  • 6: Bibliography W
  • P. L. Walker (2009) The distribution of the zeros of Jacobian elliptic functions with respect to the parameter k . Comput. Methods Funct. Theory 9 (2), pp. 579–591.
  • Z. X. Wang and D. R. Guo (1989) Special Functions. World Scientific Publishing Co. Inc., Singapore.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • J. Wishart (1928) The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A, pp. 32–52.
  • R. Wong (1995) Error bounds for asymptotic approximations of special functions. Ann. Numer. Math. 2 (1-4), pp. 181–197.
  • 7: 27.2 Functions
    27.2.1 n = r = 1 ν ( n ) p r a r ,
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. Tables of primes (§27.21) reveal great irregularity in their distribution. …
    27.2.3 π ( x ) x ln x .
    It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …
    8: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • R. S. Strichartz (1994) A Guide to Distribution Theory and Fourier Transforms. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL.
  • G. Szegö (1950) On certain special sets of orthogonal polynomials. Proc. Amer. Math. Soc. 1, pp. 731–737.
  • 9: Bibliography D
  • J. Deltour (1968) The computation of lattice frequency distribution functions by means of continued fractions. Physica 39 (3), pp. 413–423.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • E. Dorrer (1968) Algorithm 322. F-distribution. Comm. ACM 11 (2), pp. 116–117.
  • C. Dunkl, M. Ismail, and R. Wong (Eds.) (2000) Special Functions. World Scientific Publishing Co., Inc., River Edge, NJ.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 10: Bibliography C
  • B. C. Carlson (1961a) Ellipsoidal distributions of charge or mass. J. Mathematical Phys. 2, pp. 441–450.
  • R. Chattamvelli and R. Shanmugam (1997) Algorithm AS 310. Computing the non-central beta distribution function. Appl. Statist. 46 (1), pp. 146–156.
  • Y. Chikuse (2003) Statistics on Special Manifolds. Lecture Notes in Statistics, Vol. 174, Springer-Verlag, New York.
  • J. N. L. Connor and D. C. Mackay (1979) Calculation of angular distributions in complex angular momentum theories of elastic scattering. Molecular Physics 37 (6), pp. 1703–1712.
  • A. G. Constantine (1963) Some non-central distribution problems in multivariate analysis. Ann. Math. Statist. 34 (4), pp. 1270–1285.