About the Project

solutions%20in%20terms%20of%20classical%20orthogonal%20polynomials

AdvancedHelp

(0.009 seconds)

6 matching pages

1: Bibliography K
  • E. G. Kalnins and W. Miller (1993) Orthogonal Polynomials on n -spheres: Gegenbauer, Jacobi and Heun. In Topics in Polynomials of One and Several Variables and their Applications, pp. 299–322.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • W. Koepf (1999) Orthogonal polynomials and computer algebra. In Recent developments in complex analysis and computer algebra (Newark, DE, 1997), R. P. Gilbert, J. Kajiwara, and Y. S. Xu (Eds.), Int. Soc. Anal. Appl. Comput., Vol. 4, Dordrecht, pp. 205–234.
  • T. H. Koornwinder (1975c) Two-variable Analogues of the Classical Orthogonal Polynomials. In Theory and Application of Special Functions, R. A. Askey (Ed.), pp. 435–495.
  • T. H. Koornwinder (2006) Lowering and Raising Operators for Some Special Orthogonal Polynomials. In Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., Vol. 417, pp. 227–238.
  • 2: Bibliography B
  • E. Bannai (1990) Orthogonal Polynomials in Coding Theory and Algebraic Combinatorics. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 25–53.
  • P. Baratella and L. Gatteschi (1988) The Bounds for the Error Term of an Asymptotic Approximation of Jacobi Polynomials. In Orthogonal Polynomials and Their Applications (Segovia, 1986), Lecture Notes in Math., Vol. 1329, pp. 203–221.
  • P. Barrucand and D. Dickinson (1968) On the Associated Legendre Polynomials. In Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), pp. 43–50.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • P. Bleher and A. Its (1999) Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. of Math. (2) 150 (1), pp. 185–266.
  • 3: Bibliography
  • W. A. Al-Salam and L. Carlitz (1965) Some orthogonal q -polynomials. Math. Nachr. 30, pp. 47–61.
  • W. A. Al-Salam (1990) Characterization theorems for orthogonal polynomials. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 1–24.
  • G. E. Andrews and R. Askey (1985) Classical Orthogonal Polynomials. In Orthogonal Polynomials and Applications, C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, and A. Ronveaux (Eds.), Lecture Notes in Math., Vol. 1171, pp. 36–62.
  • U. M. Ascher, R. M. M. Mattheij, and R. D. Russell (1995) Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Classics in Applied Mathematics, Vol. 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • R. Askey (1975b) Orthogonal Polynomials and Special Functions. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 21, Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • 4: Bibliography G
  • G. Gasper (1977) Positive sums of the classical orthogonal polynomials. SIAM J. Math. Anal. 8 (3), pp. 423–447.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • W. Gautschi (1996) Orthogonal Polynomials: Applications and Computation. In Acta Numerica, 1996, A. Iserles (Ed.), Acta Numerica, Vol. 5, pp. 45–119.
  • W. Gautschi (2004) Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation, Oxford University Press, New York.
  • W. Gautschi (2009) Variable-precision recurrence coefficients for nonstandard orthogonal polynomials. Numer. Algorithms 52 (3), pp. 409–418.
  • 5: 18.39 Applications in the Physical Sciences
    This indicates that the Laguerre polynomials appearing in (18.39.29) are not classical OP’s, and in fact, even though infinite in number for fixed l , do not form a complete set. … The solution, (18.39.29), of the spherical radial equation (18.39.28), now expressed in terms of the Bohr quantum number n , is … The same solutions as in paragraph c), above, appear frequently in the literature in terms of associated Laguerre polynomials, which are referred to here as associated Coulomb–Laguerre polynomials to avoid confusion with the more recent meaning of ‘associated’ of §18.30. … These same solutions are expressed here in terms of Laguerre and Pollaczek OP’s. … For interpretations of zeros of classical OP’s as equilibrium positions of charges in electrostatic problems (assuming logarithmic interaction), see Ismail (2000a, b).
    6: Bibliography M
  • I. G. Macdonald (2003) Affine Hecke Algebras and Orthogonal Polynomials. Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge.
  • A. P. Magnus (1995) Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 215–237.
  • J. C. Mason (1993) Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms. In Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991), Vol. 49, pp. 169–178.
  • R. Milson (2017) Exceptional orthogonal polynomials.
  • Y. Murata (1995) Classical solutions of the third Painlevé equation. Nagoya Math. J. 139, pp. 37–65.