About the Project
NIST

small k,k′

AdvancedHelp

(0.008 seconds)

1—10 of 70 matching pages

1: 22.16 Related Functions
Approximations for Small k , k
2: 11.1 Special Notation
x

real variable.

k

nonnegative integer.

δ

arbitrary small positive constant.

For the functions J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) , I ν ( z ) , and K ν ( z ) see §§10.2(ii), 10.25(ii). The functions treated in this chapter are the Struve functions H ν ( z ) and K ν ( z ) , the modified Struve functions L ν ( z ) and M ν ( z ) , the Lommel functions s μ , ν ( z ) and S μ , ν ( z ) , the Anger function J ν ( z ) , the Weber function E ν ( z ) , and the associated Anger–Weber function A ν ( z ) .
3: 11.6 Asymptotic Expansions
11.6.1 K ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν - 2 k - 1 Γ ( ν + 1 2 - k ) , | ph z | π - δ ,
11.6.2 M ν ( z ) 1 π k = 0 ( - 1 ) k + 1 Γ ( k + 1 2 ) ( 1 2 z ) ν - 2 k - 1 Γ ( ν + 1 2 - k ) , | ph z | 1 2 π - δ .
11.6.3 0 z K 0 ( t ) d t - 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( - 1 ) k + 1 ( 2 k ) ! ( 2 k - 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | π - δ ,
11.6.6 K ν ( λ ν ) ( 1 2 λ ν ) ν - 1 π Γ ( ν + 1 2 ) k = 0 k ! c k ( λ ) ν k , | ph ν | 1 2 π - δ ,
4: 8.20 Asymptotic Expansions of E p ( z )
5: 8.1 Special Notation
x

real variable.

k , n

nonnegative integers.

δ

arbitrary small positive constant.

6: 30.1 Special Notation
x

real variable. Except in §§30.7(iv), 30.11(ii), 30.13, and 30.14, - 1 < x < 1 .

k

integer.

δ

arbitrary small positive constant.

7: 8.12 Uniform Asymptotic Expansions for Large Parameter
8.12.16 e ± π i a 2 i sin ( π a ) Q ( - a , a e ± π i ) ± 1 2 - i 2 π a k = 0 c k ( 0 ) ( - a ) - k , | ph a | π - δ ,
8: 10.17 Asymptotic Expansions for Large Argument
10.17.3 J ν ( z ) ( 2 π z ) 1 2 ( cos ω k = 0 ( - 1 ) k a 2 k ( ν ) z 2 k - sin ω k = 0 ( - 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π - δ ,
10.17.4 Y ν ( z ) ( 2 π z ) 1 2 ( sin ω k = 0 ( - 1 ) k a 2 k ( ν ) z 2 k + cos ω k = 0 ( - 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π - δ ,
10.17.9 J ν ( z ) - ( 2 π z ) 1 2 ( sin ω k = 0 ( - 1 ) k b 2 k ( ν ) z 2 k + cos ω k = 0 ( - 1 ) k b 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π - δ ,
9: 8.11 Asymptotic Approximations and Expansions
8.11.6 γ ( a , z ) - z a e - z k = 0 ( - a ) k b k ( λ ) ( z - a ) 2 k + 1 , 0 < λ < 1 , | ph a | π 2 - δ .
8.11.7 Γ ( a , z ) z a e - z k = 0 ( - a ) k b k ( λ ) ( z - a ) 2 k + 1 , λ > 1 , | ph a | 3 π 2 - δ .
10: 36.5 Stokes Sets
Stokes sets are surfaces (codimension one) in x space, across which Ψ K ( x ; k ) or Ψ ( U ) ( x ; k ) acquires an exponentially-small asymptotic contribution (in k ), associated with a complex critical point of Φ K or Φ ( U ) . …