About the Project

sine integrals

AdvancedHelp

(0.010 seconds)

11—20 of 174 matching pages

11: 6.3 Graphics
See accompanying text
Figure 6.3.2: The sine and cosine integrals Si ( x ) , Ci ( x ) , 0 x 15 . Magnify
12: 7.4 Symmetry
S ( z ) = S ( z ) ,
S ( i z ) = i S ( z ) .
g ( z ) = 2 sin ( 1 4 π + 1 2 π z 2 ) g ( z ) .
13: 6.4 Analytic Continuation
6.4.6 f ( z e ± π i ) = π e i z f ( z ) ,
6.4.7 g ( z e ± π i ) = π i e i z + g ( z ) .
Unless indicated otherwise, in the rest of this chapter and elsewhere in the DLMF the functions E 1 ( z ) , Ci ( z ) , Chi ( z ) , f ( z ) , and g ( z ) assume their principal values, that is, the branches that are real on the positive real axis and two-valued on the negative real axis.
14: 6.13 Zeros
6.13.1 x 0 = 0.37250 74107 81366 63446 19918 66580 .
Ci ( x ) and si ( x ) each have an infinite number of positive real zeros, which are denoted by c k , s k , respectively, arranged in ascending order of absolute value for k = 0 , 1 , 2 , . Values of c 1 and c 2 to 30D are given by MacLeod (1996b). …
6.13.2 c k , s k α + 1 α 16 3 1 α 3 + 1673 15 1 α 5 5 07746 105 1 α 7 + ,
15: 6.18 Methods of Computation
§6.18 Methods of Computation
Power series, asymptotic expansions, and quadrature can also be used to compute the functions f ( z ) and g ( z ) . …Then f ( z ) = B 0 , g ( z ) = A 0 , and …
§6.18(iii) Zeros
Zeros of Ci ( x ) and si ( x ) can be computed to high precision by Newton’s rule (§3.8(ii)), using values supplied by the asymptotic expansion (6.13.2) as initial approximations. …
16: 7.5 Interrelations
7.5.2 C ( z ) + i S ( z ) = 1 2 ( 1 + i ) ( z ) .
7.5.4 S ( z ) = 1 2 f ( z ) cos ( 1 2 π z 2 ) g ( z ) sin ( 1 2 π z 2 ) .
7.5.6 e ± 1 2 π i z 2 ( g ( z ) ± i f ( z ) ) = 1 2 ( 1 ± i ) ( C ( z ) ± i S ( z ) ) .
7.5.8 C ( z ) ± i S ( z ) = 1 2 ( 1 ± i ) erf ζ .
7.5.9 C ( z ) ± i S ( z ) = 1 2 ( 1 ± i ) ( 1 e ± 1 2 π i z 2 w ( i ζ ) ) .
17: 8.1 Special Notation
Unless otherwise indicated, primes denote derivatives with respect to the argument. The functions treated in this chapter are the incomplete gamma functions γ ( a , z ) , Γ ( a , z ) , γ ( a , z ) , P ( a , z ) , and Q ( a , z ) ; the incomplete beta functions B x ( a , b ) and I x ( a , b ) ; the generalized exponential integral E p ( z ) ; the generalized sine and cosine integrals si ( a , z ) , ci ( a , z ) , Si ( a , z ) , and Ci ( a , z ) . Alternative notations include: Prym’s functions P z ( a ) = γ ( a , z ) , Q z ( a ) = Γ ( a , z ) , Nielsen (1906a, pp. 25–26), Batchelder (1967, p. 63); ( a , z ) ! = γ ( a + 1 , z ) , [ a , z ] ! = Γ ( a + 1 , z ) , Dingle (1973); B ( a , b , x ) = B x ( a , b ) , I ( a , b , x ) = I x ( a , b ) , Magnus et al. (1966); Si ( a , x ) Si ( 1 a , x ) , Ci ( a , x ) Ci ( 1 a , x ) , Luke (1975).
18: 7.2 Definitions
7.2.8 S ( z ) = 0 z sin ( 1 2 π t 2 ) d t ,
( z ) , C ( z ) , and S ( z ) are entire functions of z , as are f ( z ) and g ( z ) in the next subsection. …
lim x S ( x ) = 1 2 .
7.2.10 f ( z ) = ( 1 2 S ( z ) ) cos ( 1 2 π z 2 ) ( 1 2 C ( z ) ) sin ( 1 2 π z 2 ) ,
7.2.11 g ( z ) = ( 1 2 C ( z ) ) cos ( 1 2 π z 2 ) + ( 1 2 S ( z ) ) sin ( 1 2 π z 2 ) .
19: 7.25 Software
§7.25(iv) C ( x ) , S ( x ) , f ( x ) , g ( x ) , x
§7.25(v) C ( z ) , S ( z ) , z
20: 6.7 Integral Representations
§6.7(ii) Sine and Cosine Integrals
6.7.9 si ( z ) = 0 π / 2 e z cos t cos ( z sin t ) d t ,
6.7.13 f ( z ) = 0 sin t t + z d t = 0 e z t t 2 + 1 d t ,
6.7.16 g ( z ) = 2 0 K 0 ( 2 z t ) sin t d t .