About the Project

sine function

AdvancedHelp

(0.006 seconds)

1—10 of 297 matching pages

1: 4.1 Special Notation
k , m , n integers.
The main functions treated in this chapter are the logarithm ln z , Ln z ; the exponential exp z , e z ; the circular trigonometric (or just trigonometric) functions sin z , cos z , tan z , csc z , sec z , cot z ; the inverse trigonometric functions arcsin z , Arcsin z , etc. ; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
2: 4.32 Inequalities
4.32.1 cosh x ( sinh x x ) 3 ,
4.32.2 sin x cos x < tanh x < x , x > 0 ,
4.32.3 | cosh x cosh y | | x y | sinh x sinh y , x > 0 , y > 0 ,
3: 4.35 Identities
4.35.11 cosh 2 z sinh 2 z = 1 ,
4.35.20 sinh z 2 = ( cosh z 1 2 ) 1 / 2 ,
4.35.34 sinh z = sinh x cos y + i cosh x sin y ,
4.35.35 cosh z = cosh x cos y + i sinh x sin y ,
4.35.38 | sinh z | = ( sinh 2 x + sin 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 x ) cos ( 2 y ) ) ) 1 / 2 ,
4: 4.14 Definitions and Periodicity
4.14.1 sin z = e i z e i z 2 i ,
4.14.4 tan z = sin z cos z ,
4.14.5 csc z = 1 sin z ,
4.14.7 cot z = cos z sin z = 1 tan z .
The functions sin z and cos z are entire. …
5: 4.21 Identities
4.21.12 sin 2 z + cos 2 z = 1 ,
4.21.21 sin z 2 = ± ( 1 cos z 2 ) 1 / 2 ,
4.21.37 sin z = sin x cosh y + i cos x sinh y ,
4.21.38 cos z = cos x cosh y i sin x sinh y ,
4.21.41 | sin z | = ( sin 2 x + sinh 2 y ) 1 / 2 = ( 1 2 ( cosh ( 2 y ) cos ( 2 x ) ) ) 1 / 2 ,
6: 4.18 Inequalities
Jordan’s Inequality
4.18.3 cos x sin x x 1 , 0 x π ,
4.18.5 | sinh y | | sin z | cosh y ,
4.18.6 | sinh y | | cos z | cosh y ,
4.18.9 | sin z | sinh | z | ,
7: 4.28 Definitions and Periodicity
4.28.1 sinh z = e z e z 2 ,
4.28.3 cosh z ± sinh z = e ± z ,
4.28.5 csch z = 1 sinh z ,
4.28.8 sin ( i z ) = i sinh z ,
The functions sinh z and cosh z have period 2 π i , and tanh z has period π i . …
8: 10.64 Integral Representations
10.64.1 ber n ( x 2 ) = ( 1 ) n π 0 π cos ( x sin t n t ) cosh ( x sin t ) d t ,
10.64.2 bei n ( x 2 ) = ( 1 ) n π 0 π sin ( x sin t n t ) sinh ( x sin t ) d t .
9: 4.42 Solution of Triangles
4.42.1 sin A = a c = 1 csc A ,
4.42.8 cos a = cos b cos c + sin b sin c cos A ,
4.42.10 sin a cos B = cos b sin c sin b cos c cos A ,
4.42.11 cos a cos C = sin a cot b sin C cot B ,
4.42.12 cos A = cos B cos C + sin B sin C cos a .
10: 22.10 Maclaurin Series
22.10.4 sn ( z , k ) = sin z k 2 4 ( z sin z cos z ) cos z + O ( k 4 ) ,
22.10.5 cn ( z , k ) = cos z + k 2 4 ( z sin z cos z ) sin z + O ( k 4 ) ,
22.10.6 dn ( z , k ) = 1 k 2 2 sin 2 z + O ( k 4 ) ,
22.10.7 sn ( z , k ) = tanh z k 2 4 ( z sinh z cosh z ) sech 2 z + O ( k 4 ) ,
22.10.8 cn ( z , k ) = sech z + k 2 4 ( z sinh z cosh z ) tanh z sech z + O ( k 4 ) ,