sigma function
(0.000 seconds)
1—10 of 75 matching pages
1: 32.6 Hamiltonian Structure
2: 23.1 Special Notation
…
►The main functions treated in this chapter are the Weierstrass -function
; the Weierstrass zeta function
; the Weierstrass sigma function
; the elliptic modular function
; Klein’s complete invariant ; Dedekind’s eta function
.
…
3: 23.2 Definitions and Periodic Properties
…
►
§23.2(ii) Weierstrass Elliptic Functions
… ►
23.2.6
…
►The function
is entire and odd, with simple zeros at the lattice points.
…
►For , the function
satisfies
…
►For further quasi-periodic properties of the -function see Lawden (1989, §6.2).
4: 10.73 Physical Applications
…
►For applications of the Rayleigh function
(§10.21(xiii)) to problems of heat conduction and diffusion in liquids see Kapitsa (1951a).
5: 23.10 Addition Theorems and Other Identities
…
►
23.10.3
…
►For further addition-type identities for the -function see Lawden (1989, §6.4).
…
►
23.10.10
…
►
23.10.14
…
►
23.10.19
…
6: 33.13 Complex Variable and Parameters
…
►
33.13.1
…
7: 26.2 Basic Definitions
…
►The function
also interchanges 3 and 6, and sends 4 to itself.
…
8: 10.21 Zeros
…
►If is a zero of , then
…
►The parameter may be regarded as a continuous variable and , as functions
, of .
…
►The functions
and are related to the inverses of the phase functions
and defined in §10.18(i): if , then
…
►The Rayleigh function
is defined by
►
10.21.55
.
…
9: 23.4 Graphics
…
►Line graphs of the Weierstrass functions
, , and , illustrating the lemniscatic and equianharmonic cases.
…
►Surfaces for the Weierstrass functions
, , and .
…
10: 23.6 Relations to Other Functions
…
►
23.6.9
►
23.6.10
…
►For further results for the -function see Lawden (1989, §6.2).
…
►For representations of the Jacobi functions
, , and as quotients of -functions see Lawden (1989, §§6.2, 6.3).
…
►For representations of general elliptic functions (§23.2(iii)) in terms of and see Lawden (1989, §§8.9, 8.10), and for expansions in terms of see Lawden (1989, §8.11).
…