series expansions
(0.002 seconds)
1—10 of 176 matching pages
1: 4.47 Approximations
§4.47(i) Chebyshev-Series Expansions
…2: 6.20 Approximations
§6.20(ii) Expansions in Chebyshev Series
… ►Luke and Wimp (1963) covers for (20D), and and for (20D).
Luke (1969b, pp. 41–42) gives Chebyshev expansions of , , and for , . The coefficients are given in terms of series of Bessel functions.
Luke (1969b, pp. 321–322) covers and for (the Chebyshev coefficients are given to 20D); for (20D), and for (15D). Coefficients for the sine and cosine integrals are given on pp. 325–327.
Luke (1969b, p. 25) gives a Chebyshev expansion near infinity for the confluent hypergeometric -function (§13.2(i)) from which Chebyshev expansions near infinity for , , and follow by using (6.11.2) and (6.11.3). Luke also includes a recursion scheme for computing the coefficients in the expansions of the functions. If the scheme can be used in backward direction.
3: 12.20 Approximations
§12.20 Approximations
►Luke (1969b, pp. 25 and 35) gives Chebyshev-series expansions for the confluent hypergeometric functions and (§13.2(i)) whose regions of validity include intervals with endpoints and , respectively. As special cases of these results a Chebyshev-series expansion for valid when follows from (12.7.14), and Chebyshev-series expansions for and valid when follow from (12.4.1), (12.4.2), (12.7.12), and (12.7.13). …4: 12.18 Methods of Computation
5: 8.27 Approximations
6: 13.24 Series
§13.24 Series
►§13.24(i) Expansions in Series of Whittaker Functions
►For expansions of arbitrary functions in series of functions see Schäfke (1961b). ►§13.24(ii) Expansions in Series of Bessel Functions
… ►For other series expansions see Prudnikov et al. (1990, §6.6). …7: 8.25 Methods of Computation
§8.25(i) Series Expansions
►Although the series expansions in §§8.7, 8.19(iv), and 8.21(vi) converge for all finite values of , they are cumbersome to use when is large owing to slowness of convergence and cancellation. …8: 11.15 Approximations
§11.15(i) Expansions in Chebyshev Series
►Luke (1975, pp. 416–421) gives Chebyshev-series expansions for , , , and , , for ; , , , and , , ; the coefficients are to 20D.
MacLeod (1993) gives Chebyshev-series expansions for , , , and , , ; the coefficients are to 20D.