About the Project

repeated%20integrals%20of%20error%20functions

AdvancedHelp

(0.007 seconds)

5 matching pages

1: 7.23 Tables
  • Abramowitz and Stegun (1964, Chapter 7) includes erf x , ( 2 / π ) e x 2 , x [ 0 , 2 ] , 10D; ( 2 / π ) e x 2 , x [ 2 , 10 ] , 8S; x e x 2 erfc x , x 2 [ 0 , 0.25 ] , 7D; 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 1 ( 1 ) 6 , 10 , 11 , x [ 0 , 5 ] , 6S; F ( x ) , x [ 0 , 2 ] , 10D; x F ( x ) , x 2 [ 0 , 0.25 ] , 9D; C ( x ) , S ( x ) , x [ 0 , 5 ] , 7D; f ( x ) , g ( x ) , x [ 0 , 1 ] , x 1 [ 0 , 1 ] , 15D.

  • Zhang and Jin (1996, pp. 637, 639) includes ( 2 / π ) e x 2 , erf x , x = 0 ( .02 ) 1 ( .04 ) 3 , 8D; C ( x ) , S ( x ) , x = 0 ( .2 ) 10 ( 2 ) 100 ( 100 ) 500 , 8D.

  • Zhang and Jin (1996, pp. 638, 640–641) includes the real and imaginary parts of erf z , x [ 0 , 5 ] , y = 0.5 ( .5 ) 3 , 7D and 8D, respectively; the real and imaginary parts of x e ± i t 2 d t , ( 1 / π ) e i ( x 2 + ( π / 4 ) ) x e ± i t 2 d t , x = 0 ( .5 ) 20 ( 1 ) 25 , 8D, together with the corresponding modulus and phase to 8D and 6D (degrees), respectively.

  • Fettis et al. (1973) gives the first 100 zeros of erf z and w ( z ) (the table on page 406 of this reference is for w ( z ) , not for erfc z ), 11S.

  • Zhang and Jin (1996, p. 642) includes the first 10 zeros of erf z , 9D; the first 25 distinct zeros of C ( z ) and S ( z ) , 8S.

  • 2: Bibliography G
  • W. Gautschi (1977a) Evaluation of the repeated integrals of the coerror function. ACM Trans. Math. Software 3, pp. 240–252.
  • W. Gautschi (1977b) Algorithm 521: Repeated integrals of the coerror function. ACM Trans. Math. Software 3, pp. 301–302.
  • W. Gautschi (1961) Recursive computation of the repeated integrals of the error function. Math. Comp. 15 (75), pp. 227–232.
  • W. Gautschi (2016) Algorithm 957: evaluation of the repeated integral of the coerror function by half-range Gauss-Hermite quadrature. ACM Trans. Math. Softw. 42 (1), pp. 9:1–9:10.
  • M. Geller and E. W. Ng (1971) A table of integrals of the error function. II. Additions and corrections. J. Res. Nat. Bur. Standards Sect. B 75B, pp. 149–163.
  • 3: Software Index
    Open Source With Book Commercial
    7.25(ii) erf x , erfc x , i n erfc ( x ) , x NMS
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    4: 2.11 Remainder Terms; Stokes Phenomenon
    In order to guard against this kind of error remaining undetected, the wanted function may need to be computed by another method (preferably nonasymptotic) for the smallest value of the (large) asymptotic variable x that is intended to be used. … Here erfc is the complementary error function7.2(i)), and … These answers are linked to the terms involving the complementary error function in the more powerful expansions typified by the combination of (2.11.10) and (2.11.15). … For error bounds see Dunster (1996c). … Often the process of re-expansion can be repeated any number of times. …
    5: 19.36 Methods of Computation
    Numerical differences between the variables of a symmetric integral can be reduced in magnitude by successive factors of 4 by repeated applications of the duplication theorem, as shown by (19.26.18). … If the iteration of (19.36.6) and (19.36.12) is stopped when c s < r t s ( M and T being approximated by a s and t s , and the infinite series being truncated), then the relative error in R F and R G is less than r if we neglect terms of order r 2 . … The function cel ( k c , p , a , b ) is computed by successive Bartky transformations (Bulirsch and Stoer (1968), Bulirsch (1969b)). … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). … Similarly, §19.26(ii) eases the computation of functions such as R F ( x , y , z ) when x ( > 0 ) is small compared with min ( y , z ) . …