About the Project

repeated

AdvancedHelp

(0.000 seconds)

1—10 of 30 matching pages

1: 7.18 Repeated Integrals of the Complementary Error Function
§7.18 Repeated Integrals of the Complementary Error Function
§7.18(i) Definition
§7.18(iii) Properties
Hermite Polynomials
2: 7.22 Methods of Computation
§7.22(iii) Repeated Integrals of the Complementary Error Function
The recursion scheme given by (7.18.1) and (7.18.7) can be used for computing i n erfc ( x ) . …
3: 7.21 Physical Applications
§7.21 Physical Applications
Carslaw and Jaeger (1959) gives many applications and points out the importance of the repeated integrals of the complementary error function i n erfc ( z ) . …
4: 7.25 Software
§7.25(ii) erf x , erfc x , i n erfc ( x ) , x
5: 7.23 Tables
  • Abramowitz and Stegun (1964, Chapter 7) includes erf x , ( 2 / π ) e x 2 , x [ 0 , 2 ] , 10D; ( 2 / π ) e x 2 , x [ 2 , 10 ] , 8S; x e x 2 erfc x , x 2 [ 0 , 0.25 ] , 7D; 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 1 ( 1 ) 6 , 10 , 11 , x [ 0 , 5 ] , 6S; F ( x ) , x [ 0 , 2 ] , 10D; x F ( x ) , x 2 [ 0 , 0.25 ] , 9D; C ( x ) , S ( x ) , x [ 0 , 5 ] , 7D; f ( x ) , g ( x ) , x [ 0 , 1 ] , x 1 [ 0 , 1 ] , 15D.

  • Zhang and Jin (1996, pp. 637, 639) includes ( 2 / π ) e x 2 , erf x , x = 0 ( .02 ) 1 ( .04 ) 3 , 8D; C ( x ) , S ( x ) , x = 0 ( .2 ) 10 ( 2 ) 100 ( 100 ) 500 , 8D.

  • 6: 12.7 Relations to Other Functions
    §12.7(ii) Error Functions, Dawson’s Integral, and Probability Function
    12.7.7 U ( n + 1 2 , z ) = e 1 4 z 2 𝐻ℎ n ( z ) = π  2 1 2 ( n 1 ) e 1 4 z 2 i n erfc ( z / 2 ) , n = 1 , 0 , 1 , .
    7: 7.1 Special Notation
    The main functions treated in this chapter are the error function erf z ; the complementary error functions erfc z and w ( z ) ; Dawson’s integral F ( z ) ; the Fresnel integrals ( z ) , C ( z ) , and S ( z ) ; the Goodwin–Staton integral G ( z ) ; the repeated integrals of the complementary error function i n erfc ( z ) ; the Voigt functions 𝖴 ( x , t ) and 𝖵 ( x , t ) . …
    8: 27.15 Chinese Remainder Theorem
    Even though the lengthy calculation is repeated four times, once for each modulus, most of it only uses five-digit integers and is accomplished quickly without overwhelming the machine’s memory. …
    9: 4.12 Generalized Logarithms and Exponentials
    4.12.9 ψ ( x ) = + ln ln  times x , x > 1 ,
    4.12.10 0 ln ln times x < 1 .
    10: Bibliography G
  • W. Gautschi (1977a) Evaluation of the repeated integrals of the coerror function. ACM Trans. Math. Software 3, pp. 240–252.
  • W. Gautschi (1977b) Algorithm 521: Repeated integrals of the coerror function. ACM Trans. Math. Software 3, pp. 301–302.
  • W. Gautschi (1961) Recursive computation of the repeated integrals of the error function. Math. Comp. 15 (75), pp. 227–232.
  • W. Gautschi (2016) Algorithm 957: evaluation of the repeated integral of the coerror function by half-range Gauss-Hermite quadrature. ACM Trans. Math. Softw. 42 (1), pp. 9:1–9:10.