# removable

(0.001 seconds)

## 1—10 of 32 matching pages

##### 1: Viewing DLMF Interactive 3D Graphics
Any installed VRML or X3D browser should be removed before installing a new one. …
##### 3: 1.10 Functions of a Complex Variable
This singularity is removable if $a_{n}=0$ for all $n<0$, and in this case the Laurent series becomes the Taylor series. …Lastly, if $a_{n}\not=0$ for infinitely many negative $n$, then $z_{0}$ is an isolated essential singularity. … An isolated singularity $z_{0}$ is always removable when $\lim_{z\to z_{0}}f(z)$ exists, for example $(\sin z)/z$ at $z=0$. … A cut domain is one from which the points on finitely many nonintersecting simple contours (§1.9(iii)) have been removed. … Branches of $F(z)$ can be defined, for example, in the cut plane $D$ obtained from $\mathbb{C}$ by removing the real axis from $1$ to $\infty$ and from $-1$ to $-\infty$; see Figure 1.10.1. …
##### 4: 25.14 Lerch’s Transcendent
25.14.1 ${\Phi\left(z,s,a\right)\equiv\sum_{n=0}^{\infty}\frac{z^{n}}{(a+n)^{s}}},$ $|z|<1$; $\Re s>1,|z|=1$.
##### 5: 26.15 Permutations: Matrix Notation
For $(j,k)\in B$, $B\setminus[j,k]$ denotes $B$ after removal of all elements of the form $(j,t)$ or $(t,k)$, $t=1,2,\ldots,n$. $B\setminus(j,k)$ denotes $B$ with the element $(j,k)$ removed. …
##### 6: 23.18 Modular Transformations
23.18.7 ${s(d,c)=\sum_{r=1}^{c-1}\frac{r}{c}\left(\frac{dr}{c}-\left\lfloor\frac{dr}{c}% \right\rfloor-\frac{1}{2}\right),}$ $c>0$.
##### 9: 8.18 Asymptotic Expansions of $I_{x}\left(a,b\right)$
8.18.13See (5.11.3).
##### 10: 1.4 Calculus of One Variable
A removable singularity of $f(x)$ at $x=c$ occurs when $f(c+)=f(c-)$ but $f(c)$ is undefined. … …