About the Project

relativistic Coulomb equations

AdvancedHelp

(0.002 seconds)

5 matching pages

1: 33.22 Particle Scattering and Atomic and Molecular Spectra
The relativistic motion of spinless particles in a Coulomb field, as encountered in pionic atoms and pion-nucleon scattering (Backenstoss (1970)) is described by a Klein–Gordon equation equivalent to (33.2.1); see Barnett (1981a). The motion of a relativistic electron in a Coulomb field, which arises in the theory of the electronic structure of heavy elements (Johnson (2007)), is described by a Dirac equation. …
  • Solution of relativistic Coulomb equations. See for example Cooper et al. (1979) and Barnett (1981b).

  • 2: 18.39 Applications in the Physical Sciences
    §18.39(ii) A 3D Separable Quantum System, the Hydrogen Atom
    The non-relativistic Schrödinger equation describing a single, bound (negative energy) electron, in an L 2 eigenstate of energy E is: …
    The Relativistic Quantum Coulomb Problem
    Bound state solutions to the relativistic Dirac Equation, for this same problem of a single electron attracted by a nucleus with Z protons, involve Laguerre polynomials of fractional index. …
    Discretized and Continuum Expansions of Scattering Eigenfunctions in terms of Pollaczek Polynomials: J-matrix Theory
    3: 13.28 Physical Applications
    §13.28(i) Exact Solutions of the Wave Equation
    The reduced wave equation 2 w = k 2 w in paraboloidal coordinates, x = 2 ξ η cos ϕ , y = 2 ξ η sin ϕ , z = ξ η , can be solved via separation of variables w = f 1 ( ξ ) f 2 ( η ) e i p ϕ , where …and V κ , μ ( j ) ( z ) , j = 1 , 2 , denotes any pair of solutions of Whittaker’s equation (13.14.1). …
    §13.28(ii) Coulomb Functions
    For dynamics of many-body systems see Meden and Schönhammer (1992); for tomography see D’Ariano et al. (1994); for generalized coherent states see Barut and Girardello (1971); for relativistic cosmology see Crisóstomo et al. (2004).
    4: Bibliography P
  • P. Painlevé (1906) Sur les équations différentielles du second ordre à points critiques fixès. C.R. Acad. Sc. Paris 143, pp. 1111–1117.
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations. Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • R. B. Paris (2002b) A uniform asymptotic expansion for the incomplete gamma function. J. Comput. Appl. Math. 148 (2), pp. 323–339.
  • J. L. Powell (1947) Recurrence formulas for Coulomb wave functions. Physical Rev. (2) 72 (7), pp. 626–627.
  • S. Pratt (2007) Comoving coordinate system for relativistic hydrodynamics. Phy. Rev. C 75, pp. (024907–1)–(024907–10).
  • 5: Bibliography G
  • W. Gautschi (1966) Algorithm 292: Regular Coulomb wave functions. Comm. ACM 9 (11), pp. 793–795.
  • W. Gautschi (1997b) The Computation of Special Functions by Linear Difference Equations. In Advances in Difference Equations (Veszprém, 1995), S. Elaydi, I. Győri, and G. Ladas (Eds.), pp. 213–243.
  • J. J. Gray (2000) Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd edition, Birkhäuser Boston Inc., Boston, MA.
  • W. Greiner, B. Müller, and J. Rafelski (1985) Quantum Electrodynamics of Strong Fields: With an Introduction into Modern Relativistic Quantum Mechanics. Texts and Monographs in Physics, Springer.
  • J. H. Gunn (1967) Algorithm 300: Coulomb wave functions. Comm. ACM 10 (4), pp. 244–245.