About the Project

relations to confluent hypergeometric functions and generalized hypergeometric functions

AdvancedHelp

(0.033 seconds)

11—20 of 36 matching pages

11: 35.6 Confluent Hypergeometric Functions of Matrix Argument
§35.6 Confluent Hypergeometric Functions of Matrix Argument
§35.6(i) Definitions
Laguerre Form
§35.6(ii) Properties
§35.6(iii) Relations to Bessel Functions of Matrix Argument
12: 18.11 Relations to Other Functions
§18.11 Relations to Other Functions
See §§18.5(i) and 18.5(iii) for relations to trigonometric functions, the hypergeometric function, and generalized hypergeometric functions. …
Laguerre
For the confluent hypergeometric functions M ( a , b , x ) and U ( a , b , x ) , see §13.2(i), and for the Whittaker functions M κ , μ ( x ) and W κ , μ ( x ) see §13.14(i).
Hermite
13: 8.19 Generalized Exponential Integral
§8.19(vi) Relation to Confluent Hypergeometric Function
14: 33.14 Definitions and Basic Properties
§33.14(ii) Regular Solution f ( ϵ , ; r )
where M κ , μ ( z ) and M ( a , b , z ) are defined in §§13.14(i) and 13.2(i), and …
§33.14(iii) Irregular Solution h ( ϵ , ; r )
For nonzero values of ϵ and r the function h ( ϵ , ; r ) is defined by …
§33.14(v) Wronskians
15: 13.31 Approximations
§13.31 Approximations
§13.31(i) Chebyshev-Series Expansions
Luke (1969b, pp. 35 and 25) provides Chebyshev-series expansions of M ( a , b , x ) and U ( a , b , x ) that include the intervals 0 x α and α x < , respectively, where α is an arbitrary positive constant. … For a discussion of the convergence of the Padé approximants that are related to the continued fraction (13.5.1) see Wimp (1985). …
13.31.3 z a U ( a , 1 + a b , z ) = lim n A n ( z ) B n ( z ) .
16: 12.14 The Function W ( a , x )
§12.14 The Function W ( a , x )
In other cases the general theory of (12.2.2) is available. …
§12.14(vii) Relations to Other Functions
Bessel Functions
Confluent Hypergeometric Functions
17: 18.30 Associated OP’s
§18.30(i) Associated Jacobi Polynomials
where the generalized hypergeometric function F 3 4 is defined by (16.2.1). … For the confluent hypergeometric function U see §13.2(i). … For Gauss’ hypergeometric function F see (15.2.1). … More generally, the k th corecursive monic polynomials (defined with the initialization of (18.30.28) followed by the c = k recurrence of (18.30.27)) are related to the ( k + 1 ) st monic associated polynomials by …
18: Bibliography W
  • G. Wei and B. E. Eichinger (1993) Asymptotic expansions of some matrix argument hypergeometric functions, with applications to macromolecules. Ann. Inst. Statist. Math. 45 (3), pp. 467–475.
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • J. Wimp (1965) On the zeros of a confluent hypergeometric function. Proc. Amer. Math. Soc. 16 (2), pp. 281–283.
  • E. M. Wright (1940a) The asymptotic expansion of the generalized hypergeometric function. Proc. London Math. Soc. (2) 46, pp. 389–408.
  • 19: Bibliography S
  • G. Shimura (1982) Confluent hypergeometric functions on tube domains. Math. Ann. 260 (3), pp. 269–302.
  • H. Skovgaard (1966) Uniform Asymptotic Expansions of Confluent Hypergeometric Functions and Whittaker Functions. Doctoral dissertation, University of Copenhagen, Vol. 1965, Jul. Gjellerups Forlag, Copenhagen.
  • L. J. Slater (1966) Generalized Hypergeometric Functions. Cambridge University Press, Cambridge.
  • A. D. Smirnov (1960) Tables of Airy Functions and Special Confluent Hypergeometric Functions. Pergamon Press, New York.
  • F. C. Smith (1939b) Relations among the fundamental solutions of the generalized hypergeometric equation when p = q + 1 . II. Logarithmic cases. Bull. Amer. Math. Soc. 45 (12), pp. 927–935.
  • 20: Bibliography M
  • H. Majima, K. Matsumoto, and N. Takayama (2000) Quadratic relations for confluent hypergeometric functions. Tohoku Math. J. (2) 52 (4), pp. 489–513.
  • A. R. Miller and R. B. Paris (2011) Euler-type transformations for the generalized hypergeometric function F r + 1 r + 2 ( x ) . Z. Angew. Math. Phys. 62 (1), pp. 31–45.
  • A. R. Miller (2003) On a Kummer-type transformation for the generalized hypergeometric function F 2 2 . J. Comput. Appl. Math. 157 (2), pp. 507–509.
  • S. C. Milne (1985c) A new symmetry related to 𝑆𝑈 ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • T. Morita (2013) A connection formula for the q -confluent hypergeometric function. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 050, 13.