About the Project

relations%20to%20other%20functions

AdvancedHelp

(0.010 seconds)

1—10 of 21 matching pages

1: 25.6 Integer Arguments
§25.6(i) Function Values
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
§25.6(ii) Derivative Values
§25.6(iii) Recursion Formulas
For related results see Basu and Apostol (2000).
2: 25.12 Polylogarithms
Other notations and names for Li 2 ( z ) include S 2 ( z ) (Kölbig et al. (1970)), Spence function Sp ( z ) (’t Hooft and Veltman (1979)), and L 2 ( z ) (Maximon (2003)). … The special case z = 1 is the Riemann zeta function: ζ ( s ) = Li s ( 1 ) . … Further properties include …and … In terms of polylogarithms …
3: Bibliography F
  • FDLIBM (free C library)
  • H. E. Fettis and J. C. Caslin (1969) A Table of the Complete Elliptic Integral of the First Kind for Complex Values of the Modulus. Part I. Technical report Technical Report ARL 69-0172, Aerospace Research Laboratories, Office of Aerospace Research, Wright-Patterson Air Force Base, Ohio.
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • A. Fletcher (1948) Guide to tables of elliptic functions. Math. Tables and Other Aids to Computation 3 (24), pp. 229–281.
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • 4: 25.11 Hurwitz Zeta Function
    §25.11 Hurwitz Zeta Function
    The Riemann zeta function is a special case: … For other series expansions similar to (25.11.10) see Coffey (2008). … When a = 1 , (25.11.35) reduces to (25.2.3). … Similarly, as a in the sector | ph a | 1 2 π δ ( < 1 2 π ) , …
    5: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.
  • 6: Bibliography M
  • F. Matta and A. Reichel (1971) Uniform computation of the error function and other related functions. Math. Comp. 25 (114), pp. 339–344.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • S. C. Milne (1985c) A new symmetry related to 𝑆𝑈 ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • 7: Bibliography
  • V. S. Adamchik and H. M. Srivastava (1998) Some series of the zeta and related functions. Analysis (Munich) 18 (2), pp. 131–144.
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • 8: 18.5 Explicit Representations
    Chebyshev
    Related formula: …
    §18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
    Laguerre
    Hermite
    9: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • I. A. Stegun and R. Zucker (1981) Automatic computing methods for special functions. IV. Complex error function, Fresnel integrals, and other related functions. J. Res. Nat. Bur. Standards 86 (6), pp. 661–686.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • 10: 18.39 Applications in the Physical Sciences
    ϵ 0 is referred to as the ground state, all others, n = 1 , 2 , , in order of increasing energy being excited states. …
    Other Analytically Solved Schrödinger Equations
    Table 18.39.1 lists typical non-classical weight functions, many related to the non-classical Freud weights of §18.32, and §32.15, all of which require numerical computation of the recursion coefficients (i. …Shizgal (2015, Chapter 2), contains a broad-ranged discussion of methods and applications for these, and other, non-classical weight functions. …
    §18.39(v) Other Applications