About the Project

relations%20to%20Jacobian%20elliptic%20functions

AdvancedHelp

(0.008 seconds)

8 matching pages

1: William P. Reinhardt
He has recently carried out research on non-linear dynamics of Bose–Einstein condensates that served to motivate his interest in elliptic functions. Older work on the scattering theory of the atomic Coulomb problem led to the discovery of new classes of orthogonal polynomials relating to the spectral theory of Schrödinger operators, and new uses of old ones: this work was strongly motivated by his original ownership of a 1964 hard copy printing of the original AMS 55 NBS Handbook of Mathematical Functions. …
  • 2: Software Index
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Open Source Collections and Systems.

    These are collections of software (e.g. libraries) or interactive systems of a somewhat broad scope. Contents may be adapted from research software or may be contributed by project participants who donate their services to the project. The software is made freely available to the public, typically in source code form. While formal support of the collection may not be provided by its developers, within active projects there is often a core group who donate time to consider bug reports and make updates to the collection.

  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • Guide to Available Mathematical Software

    A cross index of mathematical software in use at NIST.

  • 3: 20.11 Generalizations and Analogs
    As in §20.11(ii), the modulus k of elliptic integrals (§19.2(ii)), Jacobian elliptic functions22.2), and Weierstrass elliptic functions23.6(ii)) can be expanded in q -series via (20.9.1). However, in this case q is no longer regarded as an independent complex variable within the unit circle, because k is related to the variable τ = τ ( k ) of the theta functions via (20.9.2). … For applications to rapidly convergent expansions for π see Chudnovsky and Chudnovsky (1988), and for applications in the construction of elliptic-hypergeometric series see Rosengren (2004). … For specialization to the one-dimensional theta functions treated in the present chapter, see Rauch and Lebowitz (1973) and §21.7(iii). … Such sets of twelve equations include derivatives, differential equations, bisection relations, duplication relations, addition formulas (including new ones for theta functions), and pseudo-addition formulas. …
    4: Bibliography W
  • E. L. Wachspress (2000) Evaluating elliptic functions and their inverses. Comput. Math. Appl. 39 (3-4), pp. 131–136.
  • P. L. Walker (2003) The analyticity of Jacobian functions with respect to the parameter k . Proc. Roy. Soc. London Ser A 459, pp. 2569–2574.
  • P. L. Walker (2009) The distribution of the zeros of Jacobian elliptic functions with respect to the parameter k . Comput. Methods Funct. Theory 9 (2), pp. 579–591.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • A. Weil (1999) Elliptic Functions According to Eisenstein and Kronecker. Classics in Mathematics, Springer-Verlag, Berlin.
  • 5: Bibliography M
  • F. Matta and A. Reichel (1971) Uniform computation of the error function and other related functions. Math. Comp. 25 (114), pp. 339–344.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • S. C. Milne (1985c) A new symmetry related to 𝑆𝑈 ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • L. M. Milne-Thomson (1950) Jacobian Elliptic Function Tables. Dover Publications Inc., New York.
  • 6: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • National Bureau of Standards (1967) Tables Relating to Mathieu Functions: Characteristic Values, Coefficients, and Joining Factors. 2nd edition, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. H. Neville (1951) Jacobian Elliptic Functions. 2nd edition, Clarendon Press, Oxford.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 7: Bibliography C
  • B. C. Carlson (2004) Symmetry in c, d, n of Jacobian elliptic functions. J. Math. Anal. Appl. 299 (1), pp. 242–253.
  • B. C. Carlson (2005) Jacobian elliptic functions as inverses of an integral. J. Comput. Appl. Math. 174 (2), pp. 355–359.
  • B. C. Carlson (2006a) Some reformulated properties of Jacobian elliptic functions. J. Math. Anal. Appl. 323 (1), pp. 522–529.
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.
  • 8: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • B. D. Sleeman (1968a) Integral equations and relations for Lamé functions and ellipsoidal wave functions. Proc. Cambridge Philos. Soc. 64, pp. 113–126.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.