About the Project

relations to Heun functions

AdvancedHelp

(0.005 seconds)

1—10 of 21 matching pages

1: 31.7 Relations to Other Functions
§31.7(i) Reductions to the Gauss Hypergeometric Function
§31.7(ii) Relations to Lamé Functions
2: 31.8 Solutions via Quadratures
For 𝐦 = ( m 0 , 0 , 0 , 0 ) , these solutions reduce to Hermite’s solutions (Whittaker and Watson (1927, §23.7)) of the Lamé equation in its algebraic form. …
3: 31.12 Confluent Forms of Heun’s Equation
This has regular singularities at z = 0 and 1 , and an irregular singularity of rank 1 at z = . …
4: 29.2 Differential Equations
For the Weierstrass function see §23.2(ii). …
5: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • O. Vallée and M. Soares (2010) Airy Functions and Applications to Physics. Second edition, Imperial College Press, London.
  • C. G. van der Laan and N. M. Temme (1984) Calculation of Special Functions: The Gamma Function, the Exponential Integrals and Error-Like Functions. CWI Tract, Vol. 10, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • H. Volkmer (2023) Asymptotic expansion of the generalized hypergeometric function F q p ( z ) as z for p < q . Anal. Appl. (Singap.) 21 (2), pp. 535–545.
  • 6: 31.17 Physical Applications
    §31.17 Physical Applications
    §31.17(ii) Other Applications
    Heun functions appear in the theory of black holes (Kerr (1963), Teukolsky (1972), Chandrasekhar (1984), Suzuki et al. (1998), Kalnins et al. (2000)), lattice systems in statistical mechanics (Joyce (1973, 1994)), dislocation theory (Lay and Slavyanov (1999)), and solution of the Schrödinger equation of quantum mechanics (Bay et al. (1997), Tolstikhin and Matsuzawa (2001), and Hall et al. (2010)). For applications of Heun’s equation and functions in astrophysics see Debosscher (1998) where different spectral problems for Heun’s equation are also considered. …
    7: 31.3 Basic Solutions
    H ( a , q ; α , β , γ , δ ; z ) denotes the solution of (31.2.1) that corresponds to the exponent 0 at z = 0 and assumes the value 1 there. …
    §31.3(ii) Fuchs–Frobenius Solutions at Other Singularities
    §31.3(iii) Equivalent Expressions
    Each is related to the solution (31.3.1) by one of the automorphisms of §31.2(v). …For example, H ( a , q ; α , β , γ , δ ; z ) is equal to
    8: Bibliography M
  • A. J. MacLeod (1993) Chebyshev expansions for modified Struve and related functions. Math. Comp. 60 (202), pp. 735–747.
  • R. S. Maier (2005) On reducing the Heun equation to the hypergeometric equation. J. Differential Equations 213 (1), pp. 171–203.
  • F. Matta and A. Reichel (1971) Uniform computation of the error function and other related functions. Math. Comp. 25 (114), pp. 339–344.
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • S. C. Milne (1985c) A new symmetry related to 𝑆𝑈 ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • 9: Bibliography S
  • J. L. Schonfelder (1978) Chebyshev expansions for the error and related functions. Math. Comp. 32 (144), pp. 1232–1240.
  • J. Segura (2001) Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros. Math. Comp. 70 (235), pp. 1205–1220.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • B. D. Sleeman (1968a) Integral equations and relations for Lamé functions and ellipsoidal wave functions. Proc. Cambridge Philos. Soc. 64, pp. 113–126.
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • 10: 31.14 General Fuchsian Equation
    31.14.1 d 2 w d z 2 + ( j = 1 N γ j z a j ) d w d z + ( j = 1 N q j z a j ) w = 0 , j = 1 N q j = 0 .
    Heun’s equation (31.2.1) corresponds to N = 3 .
    Normal Form
    31.14.4 d 2 W d z 2 = j = 1 N ( γ ~ j ( z a j ) 2 + q ~ j z a j ) W , j = 1 N q ~ j = 0 ,
    The algorithm returns a list of solutions if they exist. …