About the Project

relation to symmetric elliptic integrals

AdvancedHelp

(0.016 seconds)

11—20 of 27 matching pages

11: 19.22 Quadratic Transformations
Bartky’s Transformation
§19.22(ii) Gauss’s Arithmetic-Geometric Mean (AGM)
These relations need to be used with caution because y is negative when 0 < a < z + z ( z + 2 + z 2 ) 1 / 2 .
12: 19.1 Special Notation
All derivatives are denoted by differentials, not by primes. … In Abramowitz and Stegun (1964, Chapter 17) the functions (19.1.1) and (19.1.2) are denoted, in order, by K ( α ) , E ( α ) , Π ( n \ α ) , F ( ϕ \ α ) , E ( ϕ \ α ) , and Π ( n ; ϕ \ α ) , where α = arcsin k and n is the α 2 (not related to k ) in (19.1.1) and (19.1.2). …However, it should be noted that in Chapter 8 of Abramowitz and Stegun (1964) the notation used for elliptic integrals differs from Chapter 17 and is consistent with that used in the present chapter and the rest of the NIST Handbook and DLMF. … R F ( x , y , z ) , R G ( x , y , z ) , and R J ( x , y , z , p ) are the symmetric (in x , y , and z ) integrals of the first, second, and third kinds; they are complete if exactly one of x , y , and z is identically 0. R a ( b 1 , b 2 , , b n ; z 1 , z 2 , , z n ) is a multivariate hypergeometric function that includes all the functions in (19.1.3). …
13: 20.9 Relations to Other Functions
§20.9 Relations to Other Functions
§20.9(i) Elliptic Integrals
§20.9(ii) Elliptic Functions and Modular Functions
See §§22.2 and 23.6(i) for the relations of Jacobian and Weierstrass elliptic functions to theta functions. The relations (20.9.1) and (20.9.2) between k and τ (or q ) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485). …
14: 15.17 Mathematical Applications
This topic is treated in §§15.10 and 15.11. …
§15.17(ii) Conformal Mappings
Hypergeometric functions, especially complete elliptic integrals, also play an important role in quasiconformal mapping. … First, as spherical functions on noncompact Riemannian symmetric spaces of rank one, but also as associated spherical functions, intertwining functions, matrix elements of SL ( 2 , ) , and spherical functions on certain nonsymmetric Gelfand pairs. … Quadratic transformations give insight into the relation of elliptic integrals to the arithmetic-geometric mean (§19.22(ii)). …
15: 19.29 Reduction of General Elliptic Integrals
§19.29 Reduction of General Elliptic Integrals
§19.29(i) Reduction Theorems
§19.29(ii) Reduction to Basic Integrals
Partial fractions provide a reduction to integrals in which 𝐦 has at most one nonzero component, and these are then reduced to basic integrals by the recurrence relations. …which shows how to express the basic integral I ( 𝐞 j ) in terms of symmetric integrals by using (19.29.4) and either (19.29.7) or (19.29.8). …
16: Bibliography L
  • G. Labahn and M. Mutrie (1997) Reduction of Elliptic Integrals to Legendre Normal Form. Technical report Technical Report 97-21, Department of Computer Science, University of Waterloo, Waterloo, Ontario.
  • J. L. López (2001) Uniform asymptotic expansions of symmetric elliptic integrals. Constr. Approx. 17 (4), pp. 535–559.
  • J. L. López (2000) Asymptotic expansions of symmetric standard elliptic integrals. SIAM J. Math. Anal. 31 (4), pp. 754–775.
  • Y. L. Luke (1968) Approximations for elliptic integrals. Math. Comp. 22 (103), pp. 627–634.
  • Y. L. Luke (1970) Further approximations for elliptic integrals. Math. Comp. 24 (109), pp. 191–198.
  • 17: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • R. R. Rosales (1978) The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • H. Rosengren (2004) Elliptic hypergeometric series on root systems. Adv. Math. 181 (2), pp. 417–447.
  • R. Roy (2017) Elliptic and modular functions from Gauss to Dedekind to Hecke. Cambridge University Press, Cambridge.
  • 18: Bibliography S
  • D. Schmidt and G. Wolf (1979) A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations. SIAM J. Math. Anal. 10 (4), pp. 823–838.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • B. D. Sleeman (1968a) Integral equations and relations for Lamé functions and ellipsoidal wave functions. Proc. Cambridge Philos. Soc. 64, pp. 113–126.
  • D. M. Smith (2011) Algorithm 911: multiple-precision exponential integral and related functions. ACM Trans. Math. Software 37 (4), pp. Art. 46, 16.
  • I. A. Stegun and R. Zucker (1976) Automatic computing methods for special functions. III. The sine, cosine, exponential integrals, and related functions. J. Res. Nat. Bur. Standards Sect. B 80B (2), pp. 291–311.
  • 19: Bibliography C
  • B. C. Carlson and J. FitzSimons (2000) Reduction theorems for elliptic integrands with the square root of two quadratic factors. J. Comput. Appl. Math. 118 (1-2), pp. 71–85.
  • B. C. Carlson and J. L. Gustafson (1994) Asymptotic approximations for symmetric elliptic integrals. SIAM J. Math. Anal. 25 (2), pp. 288–303.
  • B. C. Carlson (1970) Inequalities for a symmetric elliptic integral. Proc. Amer. Math. Soc. 25 (3), pp. 698–703.
  • B. C. Carlson (1999) Toward symbolic integration of elliptic integrals. J. Symbolic Comput. 28 (6), pp. 739–753.
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • 20: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • M. Ikonomou, P. Köhler, and A. F. Jacob (1995) Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines. Z. Angew. Math. Mech. 75 (12), pp. 917–926.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.