About the Project

relation to Riemann zeta function

AdvancedHelp

(0.009 seconds)

11—20 of 36 matching pages

11: Bibliography
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • 12: 25.13 Periodic Zeta Function
    §25.13 Periodic Zeta Function
    The notation F ( x , s ) is used for the polylogarithm Li s ( e 2 π i x ) with x real:
    25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
    F ( x , s ) is periodic in x with period 1, and equals ζ ( s ) when x is an integer. Also, …
    13: 27.4 Euler Products and Dirichlet Series
    Euler products are used to find series that generate many functions of multiplicative number theory. The completely multiplicative function f ( n ) = n s gives the Euler product representation of the Riemann zeta function ζ ( s ) 25.2(i)): … The Riemann zeta function is the prototype of series of the form …The following examples have generating functions related to the zeta function: …In (27.4.12) and (27.4.13) ζ ( s ) is the derivative of ζ ( s ) .
    14: 27.5 Inversion Formulas
    Generating functions yield many relations connecting number-theoretic functions. For example, the equation ζ ( s ) ( 1 / ζ ( s ) ) = 1 is equivalent to the identity …which, in turn, is the basis for the Möbius inversion formula relating sums over divisors: … For a general theory of Möbius inversion with applications to combinatorial theory see Rota (1964).
    15: 25.1 Special Notation
    (For other notation see Notation for the Special Functions.)
    k , m , n nonnegative integers.
    The main function treated in this chapter is the Riemann zeta function ζ ( s ) . This notation was introduced in Riemann (1859). The main related functions are the Hurwitz zeta function ζ ( s , a ) , the dilogarithm Li 2 ( z ) , the polylogarithm Li s ( z ) (also known as Jonquière’s function ϕ ( z , s ) ), Lerch’s transcendent Φ ( z , s , a ) , and the Dirichlet L -functions L ( s , χ ) .
    16: 25.18 Methods of Computation
    Calculations relating to derivatives of ζ ( s ) and/or ζ ( s , a ) can be found in Apostol (1985a), Choudhury (1995), Miller and Adamchik (1998), and Yeremin et al. (1988). …
    17: 6.16 Mathematical Applications
    Hence, if x is fixed and n , then S n ( x ) 1 4 π , 0 , or 1 4 π according as 0 < x < π , x = 0 , or π < x < 0 ; compare (6.2.14). … It occurs with Fourier-series expansions of all piecewise continuous functions. … … If we assume Riemann’s hypothesis that all nonreal zeros of ζ ( s ) have real part of 1 2 25.10(i)), then …where π ( x ) is the number of primes less than or equal to x . …
    18: 5.16 Sums
    §5.16 Sums
    5.16.2 k = 1 1 k ψ ( k + 1 ) = ζ ( 3 ) = 1 2 ψ ′′ ( 1 ) .
    For further sums involving the psi function see Hansen (1975, pp. 360–367). For sums of gamma functions see Andrews et al. (1999, Chapters 2 and 3) and §§15.2(i), 16.2. For related sums involving finite field analogs of the gamma and beta functions (Gauss and Jacobi sums) see Andrews et al. (1999, Chapter 1) and Terras (1999, pp. 90, 149).
    19: Bibliography L
  • N. Levinson (1974) More than one third of zeros of Riemann’s zeta-function are on σ = 1 2 . Advances in Math. 13 (4), pp. 383–436.
  • S. Lewanowicz (1985) Recurrence relations for hypergeometric functions of unit argument. Math. Comp. 45 (172), pp. 521–535.
  • S. Lewanowicz (1987) Corrigenda: “Recurrence relations for hypergeometric functions of unit argument” [Math. Comp. 45 (1985), no. 172, 521–535; MR 86m:33004]. Math. Comp. 48 (178), pp. 853.
  • X. Li, X. Shi, and J. Zhang (1991) Generalized Riemann ζ -function regularization and Casimir energy for a piecewise uniform string. Phys. Rev. D 44 (2), pp. 560–562.
  • L. Lorch and M. E. Muldoon (2008) Monotonic sequences related to zeros of Bessel functions. Numer. Algorithms 49 (1-4), pp. 221–233.
  • 20: Bibliography D
  • N. G. de Bruijn (1937) Integralen voor de ζ -functie van Riemann. Mathematica (Zutphen) B5, pp. 170–180 (Dutch).
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, and M. Schmies (2004) Computing Riemann theta functions. Math. Comp. 73 (247), pp. 1417–1442.
  • T. M. Dunster (1990a) Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM J. Math. Anal. 21 (4), pp. 995–1018.
  • T. M. Dunster (2006) Uniform asymptotic approximations for incomplete Riemann zeta functions. J. Comput. Appl. Math. 190 (1-2), pp. 339–353.