About the Project

relation to Heun equation

AdvancedHelp

(0.002 seconds)

11—20 of 20 matching pages

11: 31.16 Mathematical Applications
§31.16 Mathematical Applications
§31.16(i) Uniformization Problem for Heun’s Equation
It describes the monodromy group of Heun’s equation for specific values of the accessory parameter.
§31.16(ii) Heun Polynomial Products
12: 31.9 Orthogonality
§31.9(i) Single Orthogonality
For corresponding orthogonality relations for Heun functions (§31.4) and Heun polynomials (§31.5), see Lambe and Ward (1934), Erdélyi (1944), Sleeman (1966a), and Ronveaux (1995, Part A, pp. 59–64).
§31.9(ii) Double Orthogonality
Heun polynomials w j = 𝐻𝑝 n j , m j , j = 1 , 2 , satisfy …and the integration paths 1 , 2 are Pochhammer double-loop contours encircling distinct pairs of singularities { 0 , 1 } , { 0 , a } , { 1 , a } . …
13: Bibliography B
  • G. Blanch and D. S. Clemm (1962) Tables Relating to the Radial Mathieu Functions. Vol. 1: Functions of the First Kind. U.S. Government Printing Office, Washington, D.C..
  • G. Blanch and D. S. Clemm (1965) Tables Relating to the Radial Mathieu Functions. Vol. 2: Functions of the Second Kind. U.S. Government Printing Office, Washington, D.C..
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • A. A. Bogush and V. S. Otchik (1997) Problem of two Coulomb centres at large intercentre separation: Asymptotic expansions from analytical solutions of the Heun equation. J. Phys. A 30 (2), pp. 559–571.
  • W. Bühring (1994) The double confluent Heun equation: Characteristic exponent and connection formulae. Methods Appl. Anal. 1 (3), pp. 348–370.
  • 14: Bibliography H
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • R. L. Hall, N. Saad, and K. D. Sen (2010) Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 51 (2), pp. Art. ID 022107, 19 pages.
  • N. J. Hitchin (1995) Poncelet Polygons and the Painlevé Equations. In Geometry and Analysis (Bombay, 1992), Ramanan (Ed.), pp. 151–185.
  • H. Hochstadt (1963) Estimates of the stability intervals for Hill’s equation. Proc. Amer. Math. Soc. 14 (6), pp. 930–932.
  • H. Hochstadt (1964) Differential Equations: A Modern Approach. Holt, Rinehart and Winston, New York.
  • 15: Bibliography R
  • W. H. Reid (1972) Composite approximations to the solutions of the Orr-Sommerfeld equation. Studies in Appl. Math. 51, pp. 341–368.
  • W. H. Reid (1974a) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow. Studies in Appl. Math. 53, pp. 91–110.
  • W. H. Reid (1974b) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory. Studies in Appl. Math. 53, pp. 217–224.
  • A. Ronveaux (Ed.) (1995) Heun’s Differential Equations. The Clarendon Press Oxford University Press, New York.
  • R. R. Rosales (1978) The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • 16: Bibliography F
  • M. V. Fedoryuk (1991) Asymptotics of the spectrum of the Heun equation and of Heun functions. Izv. Akad. Nauk SSSR Ser. Mat. 55 (3), pp. 631–646 (Russian).
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • A. S. Fokas and M. J. Ablowitz (1982) On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23 (11), pp. 2033–2042.
  • A. S. Fokas, B. Grammaticos, and A. Ramani (1993) From continuous to discrete Painlevé equations. J. Math. Anal. Appl. 180 (2), pp. 342–360.
  • P. J. Forrester and N. S. Witte (2001) Application of the τ -function theory of Painlevé equations to random matrices: PIV, PII and the GUE. Comm. Math. Phys. 219 (2), pp. 357–398.
  • 17: Errata
  • Equations (31.3.10), (31.3.11)
    31.3.10 z α H ( 1 a , q a α ( β ϵ ) α a ( β δ ) ; α , α γ + 1 , α β + 1 , δ ; 1 z )
    31.3.11 z β H ( 1 a , q a β ( α ϵ ) β a ( α δ ) ; β , β γ + 1 , β α + 1 , δ ; 1 z )

    In both equations, the second entry in the H has been corrected with an extra minus sign.

  • Additions

    Section: 15.9(v) Complete Elliptic Integrals. Equations: (11.11.9_5), (11.11.13_5), Intermediate equality in (15.4.27) which relates to F ( a , a ; a + 1 ; 1 2 ) , (15.4.34), (19.5.4_1), (19.5.4_2) and (19.5.4_3).

  • Equations (10.22.37), (10.22.38), (14.17.6)–(14.17.9)

    The Kronecker delta symbols have been moved furthest to the right, as is common convention for orthogonality relations.

  • Equation (9.7.2)

    Following a suggestion from James McTavish on 2017-04-06, the recurrence relation u k = ( 6 k 5 ) ( 6 k 3 ) ( 6 k 1 ) ( 2 k 1 ) 216 k u k 1 was added to Equation (9.7.2).

  • Chapter 25 Zeta and Related Functions

    A number of additions and changes have been made to the metadata to reflect new and changed references as well as to how some equations have been derived.

  • 18: Bibliography D
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • T. M. Dunster, D. A. Lutz, and R. Schäfke (1993) Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions. Proc. Roy. Soc. London Ser. A 440, pp. 37–54.
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.
  • 19: Bibliography W
  • X.-S. Wang and R. Wong (2012) Asymptotics of orthogonal polynomials via recurrence relations. Anal. Appl. (Singap.) 10 (2), pp. 215–235.
  • B. M. Watrasiewicz (1967) Some useful integrals of Si ( x ) , Ci ( x ) and related integrals. Optica Acta 14 (3), pp. 317–322.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • J. Wimp (1984) Computation with Recurrence Relations. Pitman, Boston, MA.
  • G. Wolf (1998) On the central connection problem for the double confluent Heun equation. Math. Nachr. 195, pp. 267–276.
  • 20: Bibliography G
  • W. Gautschi (1959b) Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38 (1), pp. 77–81.
  • W. Gautschi (1984) Questions of Numerical Condition Related to Polynomials. In Studies in Numerical Analysis, G. H. Golub (Ed.), pp. 140–177.
  • J. J. Gray (2000) Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd edition, Birkhäuser Boston Inc., Boston, MA.
  • W. Groenevelt (2007) Fourier transforms related to a root system of rank 1. Transform. Groups 12 (1), pp. 77–116.
  • A. J. Guttmann and T. Prellberg (1993) Staircase polygons, elliptic integrals, Heun functions, and lattice Green functions. Phys. Rev. E 47 (4), pp. R2233–R2236.