About the Project

relation%20to%20lattice%20paths

AdvancedHelp

(0.004 seconds)

4 matching pages

1: 26.6 Other Lattice Path Numbers
§26.6 Other Lattice Path Numbers
Delannoy Number D ( m , n )
Motzkin Number M ( n )
Narayana Number N ( n , k )
Schröder Number r ( n )
2: 26.5 Lattice Paths: Catalan Numbers
§26.5 Lattice Paths: Catalan Numbers
§26.5(i) Definitions
It counts the number of lattice paths from ( 0 , 0 ) to ( n , n ) that stay on or above the line y = x . …
§26.5(iii) Recurrence Relations
3: 26.3 Lattice Paths: Binomial Coefficients
§26.3 Lattice Paths: Binomial Coefficients
§26.3(i) Definitions
( m + n n ) is the number of lattice paths from ( 0 , 0 ) to ( m , n ) . …The number of lattice paths from ( 0 , 0 ) to ( m , n ) , m n , that stay on or above the line y = x is ( m + n m ) ( m + n m 1 ) .
§26.3(iii) Recurrence Relations
4: 26.9 Integer Partitions: Restricted Number and Part Size
Conjugation establishes a one-to-one correspondence between partitions of n into at most k parts and partitions of n into parts with largest part less than or equal to k . It follows that p k ( n ) also equals the number of partitions of n into parts that are less than or equal to k . … It is also equal to the number of lattice paths from ( 0 , 0 ) to ( m , k ) that have exactly n vertices ( h , j ) , 1 h m , 1 j k , above and to the left of the lattice path. …
§26.9(iii) Recurrence Relations
As n with k fixed, …