About the Project

relation%20to%20amplitude%20%28am%29%20function

AdvancedHelp

(0.010 seconds)

1—10 of 1013 matching pages

1: 22.16 Related Functions
§22.16 Related Functions
§22.16(i) Jacobi’s Amplitude ( am ) Function
Relation to Elliptic Integrals
Relation to Theta Functions
Relation to the Elliptic Integral E ( ϕ , k )
2: 8 Incomplete Gamma and Related
Functions
Chapter 8 Incomplete Gamma and Related Functions
3: William P. Reinhardt
Reinhardt is a frequent visitor to the NIST Physics Laboratory in Gaithersburg, and to the Joint Quantum Institute (JQI) and Institute for Physical Sciences and Technology (ISTP) at the University of Maryland. … He has recently carried out research on non-linear dynamics of Bose–Einstein condensates that served to motivate his interest in elliptic functions. Older work on the scattering theory of the atomic Coulomb problem led to the discovery of new classes of orthogonal polynomials relating to the spectral theory of Schrödinger operators, and new uses of old ones: this work was strongly motivated by his original ownership of a 1964 hard copy printing of the original AMS 55 NBS Handbook of Mathematical Functions. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    4: Gergő Nemes
    Nemes has research interests in asymptotic analysis, Écalle theory, exact WKB analysis, and special functions. As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. In March 2022, Nemes was named Contributing Developer of the NIST Digital Library of Mathematical Functions.
    5: Wolter Groenevelt
    Groenevelt’s research interests is in special functions and orthogonal polynomials and their relations with representation theory and interacting particle systems. As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. In July 2023, Groenevelt was named Contributing Developer of the NIST Digital Library of Mathematical Functions.
    6: 8.17 Incomplete Beta Functions
    §8.17 Incomplete Beta Functions
    However, in the case of §8.17 it is straightforward to continue most results analytically to other real values of a , b , and x , and also to complex values. …
    §8.17(ii) Hypergeometric Representations
    §8.17(iv) Recurrence Relations
    §8.17(vii) Addendum to 8.17(i) Definitions and Basic Properties
    7: 27.2 Functions
    ( ν ( 1 ) is defined to be 0.) Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …They tend to thin out among the large integers, but this thinning out is not completely regular. … the sum of the k th powers of the positive integers m n that are relatively prime to n . … is the number of k -tuples of integers n whose greatest common divisor is relatively prime to n . …
    8: 33.24 Tables
    §33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • Curtis (1964a) tabulates P ( ϵ , r ) , Q ( ϵ , r ) 33.1), and related functions for = 0 , 1 , 2 and ϵ = 2 ( .2 ) 2 , with x = 0 ( .1 ) 4 for ϵ < 0 and x = 0 ( .1 ) 10 for ϵ 0 ; 6D.

  • 9: 26.3 Lattice Paths: Binomial Coefficients
    §26.3(i) Definitions
    ( m n ) is the number of ways of choosing n objects from a collection of m distinct objects without regard to order. ( m + n n ) is the number of lattice paths from ( 0 , 0 ) to ( m , n ) . …The number of lattice paths from ( 0 , 0 ) to ( m , n ) , m n , that stay on or above the line y = x is ( m + n m ) ( m + n m 1 ) .
    §26.3(iii) Recurrence Relations
    10: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    §26.4(i) Definitions
    It is also the number of k -dimensional lattice paths from ( 0 , 0 , , 0 ) to ( n 1 , n 2 , , n k ) . For k = 0 , 1 , the multinomial coefficient is defined to be 1 . … (The empty set is considered to have one permutation consisting of no cycles.) …
    §26.4(iii) Recurrence Relation