About the Project

relation to sine and cosine integrals

AdvancedHelp

(0.012 seconds)

1—10 of 52 matching pages

1: 6.5 Further Interrelations
§6.5 Further Interrelations
2: 6.2 Definitions and Interrelations
§6.2(i) Exponential and Logarithmic Integrals
The logarithmic integral is defined by …
§6.2(ii) Sine and Cosine Integrals
Values at Infinity
Hyperbolic Analogs of the Sine and Cosine Integrals
3: 6.11 Relations to Other Functions
4: 8.21 Generalized Sine and Cosine Integrals
§8.21(v) Special Values
5: 7.2 Definitions
§7.2(ii) Dawson’s Integral
§7.2(iii) Fresnel Integrals
( z ) , C ( z ) , and S ( z ) are entire functions of z , as are f ( z ) and g ( z ) in the next subsection. …
§7.2(iv) Auxiliary Functions
§7.2(v) Goodwin–Staton Integral
6: 7.5 Interrelations
§7.5 Interrelations
7.5.3 C ( z ) = 1 2 + f ( z ) sin ( 1 2 π z 2 ) g ( z ) cos ( 1 2 π z 2 ) ,
… …For Ei ( x ) see §6.2(i).
7: 7.1 Special Notation
Unless otherwise noted, primes indicate derivatives with respect to the argument. The main functions treated in this chapter are the error function erf z ; the complementary error functions erfc z and w ( z ) ; Dawson’s integral F ( z ) ; the Fresnel integrals ( z ) , C ( z ) , and S ( z ) ; the Goodwin–Staton integral G ( z ) ; the repeated integrals of the complementary error function i n erfc ( z ) ; the Voigt functions 𝖴 ( x , t ) and 𝖵 ( x , t ) . Alternative notations are Q ( z ) = 1 2 erfc ( z / 2 ) , P ( z ) = Φ ( z ) = 1 2 erfc ( z / 2 ) , Erf z = 1 2 π erf z , Erfi z = e z 2 F ( z ) , C 1 ( z ) = C ( 2 / π z ) , S 1 ( z ) = S ( 2 / π z ) , C 2 ( z ) = C ( 2 z / π ) , S 2 ( z ) = S ( 2 z / π ) . …
8: 7.13 Zeros
At z = 0 , C ( z ) has a simple zero and S ( z ) has a triple zero. … Tables 7.13.3 and 7.13.4 give 10D values of the first five x n and y n of C ( z ) and S ( z ) , respectively. … As n the x n and y n corresponding to the zeros of C ( z ) satisfy … In consequence of (7.5.5) and (7.5.10), zeros of ( z ) are related to zeros of erfc z . … For an asymptotic expansion of the zeros of 0 z exp ( 1 2 π i t 2 ) d t ( = ( 0 ) ( z ) = C ( z ) + i S ( z ) ) see Tuẑilin (1971). …
9: 7.11 Relations to Other Functions
§7.11 Relations to Other Functions
Incomplete Gamma Functions and Generalized Exponential Integral
Confluent Hypergeometric Functions
7.11.6 C ( z ) + i S ( z ) = z M ( 1 2 , 3 2 , 1 2 π i z 2 ) = z e π i z 2 / 2 M ( 1 , 3 2 , 1 2 π i z 2 ) .
Generalized Hypergeometric Functions
10: 11.10 Anger–Weber Functions
§11.10(vi) Relations to Other Functions
For the Fresnel integrals C and S see §7.2(iii). …
§11.10(ix) Recurrence Relations and Derivatives
§11.10(x) Integrals and Sums