About the Project

relation to modified Mathieu functions

AdvancedHelp

(0.005 seconds)

1—10 of 18 matching pages

1: 28.20 Definitions and Basic Properties
§28.20(ii) Solutions Ce ν , Se ν , Me ν , Fe n , Ge n
§28.20(iv) Radial Mathieu Functions Mc n ( j ) , Ms n ( j )
2: 28.32 Mathematical Applications
§28.32 Mathematical Applications
§28.32(i) Elliptical Coordinates and an Integral Relationship
This leads to integral equations and an integral relation between the solutions of Mathieu’s equation (setting ζ = i ξ , z = η in (28.32.3)). …
3: 28.8 Asymptotic Expansions for Large q
§28.8(ii) Sips’ Expansions
Barrett’s Expansions
Barrett (1981) supplies asymptotic approximations for numerically satisfactory pairs of solutions of both Mathieu’s equation (28.2.1) and the modified Mathieu equation (28.20.1). … Subsequently the asymptotic solutions involving either elementary or Whittaker functions are identified in terms of the Floquet solutions me ν ( z , q ) 28.12(ii)) and modified Mathieu functions M ν ( j ) ( z , h ) 28.20(iii)). …
4: 28.34 Methods of Computation
§28.34(i) Characteristic Exponents
  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation (§28.31(i)) and eigenvalues of Lamé functions29.3(i)).

  • §28.34(iv) Modified Mathieu Functions
    For the modified functions we have: …
  • (c)

    Use of asymptotic expansions for large z or large q . See §§28.25 and 28.26.

  • 5: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • O. Vallée and M. Soares (2010) Airy Functions and Applications to Physics. Second edition, Imperial College Press, London.
  • A. L. Van Buren and J. E. Boisvert (2007) Accurate calculation of the modified Mathieu functions of integer order. Quart. Appl. Math. 65 (1), pp. 1–23.
  • Van Buren (website) Mathieu and Spheroidal Wave Functions: Fortran Programs for their Accurate Calculation
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • 6: Bibliography C
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • R. Cicchetti and A. Faraone (2004) Incomplete Hankel and modified Bessel functions: A class of special functions for electromagnetics. IEEE Trans. Antennas and Propagation 52 (12), pp. 3373–3389.
  • W. J. Cody (1991) Performance evaluation of programs related to the real gamma function. ACM Trans. Math. Software 17 (1), pp. 46–54.
  • M. W. Coffey (2009) An efficient algorithm for the Hurwitz zeta and related functions. J. Comput. Appl. Math. 225 (2), pp. 338–346.
  • H. S. Cohl (2010) Derivatives with respect to the degree and order of associated Legendre functions for | z | > 1 using modified Bessel functions. Integral Transforms Spec. Funct. 21 (7-8), pp. 581–588.
  • 7: Bibliography T
  • N. M. Temme (1990b) Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions. SIAM J. Math. Anal. 21 (1), pp. 241–261.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • I. J. Thompson and A. R. Barnett (1987) Modified Bessel functions I ν ( z ) and K ν ( z ) of real order and complex argument, to selected accuracy. Comput. Phys. Comm. 47 (2-3), pp. 245–257.
  • O. I. Tolstikhin and M. Matsuzawa (2001) Hyperspherical elliptic harmonics and their relation to the Heun equation. Phys. Rev. A 63 (032510), pp. 1–8.
  • Go. Torres-Vega, J. D. Morales-Guzmán, and A. Zúñiga-Segundo (1998) Special functions in phase space: Mathieu functions. J. Phys. A 31 (31), pp. 6725–6739.
  • 8: Errata
  • Source citations

    Specific source citations and proof metadata are now given for all equations in Chapter 25 Zeta and Related Functions.

  • Chapters 14 Legendre and Related Functions, 15 Hypergeometric Function

    The Gegenbauer function C α ( λ ) ( z ) , was labeled inadvertently as the ultraspherical (Gegenbauer) polynomial C n ( λ ) ( z ) . In order to resolve this inconsistency, this function now links correctly to its definition. This change affects Gegenbauer functions which appear in §§14.3(iv), 15.9(iii).

  • Equations (10.22.37), (10.22.38), (14.17.6)–(14.17.9)

    The Kronecker delta symbols have been moved furthest to the right, as is common convention for orthogonality relations.

  • Chapter 25 Zeta and Related Functions

    A number of additions and changes have been made to the metadata to reflect new and changed references as well as to how some equations have been derived.

  • Equations (28.28.21) and (28.28.22)
    28.28.21 4 π 0 π / 2 𝒞 2 + 1 ( j ) ( 2 h R ) cos ( ( 2 + 1 ) ϕ ) ce 2 m + 1 ( t , h 2 ) d t = ( 1 ) + m A 2 + 1 2 m + 1 ( h 2 ) Mc 2 m + 1 ( j ) ( z , h )
    28.28.22 4 π 0 π / 2 𝒞 2 + 1 ( j ) ( 2 h R ) sin ( ( 2 + 1 ) ϕ ) se 2 m + 1 ( t , h 2 ) d t = ( 1 ) + m B 2 + 1 2 m + 1 ( h 2 ) Ms 2 m + 1 ( j ) ( z , h ) ,

    Originally the prefactor 4 π and upper limit of integration π / 2 in these two equations were given incorrectly as 2 π and π .

    Reported 2015-05-20 by Ruslan Kabasayev

  • 9: Bibliography S
  • J. Segura, P. Fernández de Córdoba, and Yu. L. Ratis (1997) A code to evaluate modified Bessel functions based on the continued fraction method. Comput. Phys. Comm. 105 (2-3), pp. 263–272.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • A. Sharples (1971) Uniform asymptotic expansions of modified Mathieu functions. J. Reine Angew. Math. 247, pp. 1–17.
  • R. B. Shirts (1993b) Algorithm 721: MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu’s differential equation for noninteger and integer order. ACM Trans. Math. Software 19 (3), pp. 391–406.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • 10: Bibliography M
  • A. J. MacLeod (1993) Chebyshev expansions for modified Struve and related functions. Math. Comp. 60 (202), pp. 735–747.
  • H. Majima, K. Matsumoto, and N. Takayama (2000) Quadratic relations for confluent hypergeometric functions. Tohoku Math. J. (2) 52 (4), pp. 489–513.
  • F. Matta and A. Reichel (1971) Uniform computation of the error function and other related functions. Math. Comp. 25 (114), pp. 339–344.
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • S. C. Milne (1985c) A new symmetry related to 𝑆𝑈 ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.