About the Project

relation to infinite double series

AdvancedHelp

(0.002 seconds)

1—10 of 14 matching pages

1: 1.9 Calculus of a Complex Variable
1.9.66 z p , q = m = 0 p n = 0 q ζ m , n .
2: 25.16 Mathematical Applications
which is related to the Riemann zeta function by … The prime number theorem (27.2.3) is equivalent to the statement … The Riemann hypothesis is equivalent to the statement … H ( s ) is analytic for s > 1 , and can be extended meromorphically into the half-plane s > 2 k for every positive integer k by use of the relationsRelated results are: …
3: 20.5 Infinite Products and Related Results
§20.5 Infinite Products and Related Results
With the given conditions the infinite series in (20.5.10)–(20.5.13) converge absolutely and uniformly in compact sets in the z -plane. …
§20.5(iii) Double Products
These double products are not absolutely convergent; hence the order of the limits is important. …
4: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • J. T. Ratnanather, J. H. Kim, S. Zhang, A. M. J. Davis, and S. K. Lucas (2014) Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions. ACM Trans. Math. Softw. 40 (2), pp. 14:1–14:12.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • H. Rosengren (2004) Elliptic hypergeometric series on root systems. Adv. Math. 181 (2), pp. 417–447.
  • R. Roy (2011) Sources in the development of mathematics. Cambridge University Press, Cambridge.
  • 5: Bibliography
  • R. W. Abernathy and R. P. Smith (1993) Algorithm 724: Program to calculate F-percentiles. ACM Trans. Math. Software 19 (4), pp. 481–483.
  • V. S. Adamchik and H. M. Srivastava (1998) Some series of the zeta and related functions. Analysis (Munich) 18 (2), pp. 131–144.
  • W. R. Alford, A. Granville, and C. Pomerance (1994) There are infinitely many Carmichael numbers. Ann. of Math. (2) 139 (3), pp. 703–722.
  • H. M. Antia (1993) Rational function approximations for Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 84, pp. 101–108.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • 6: 25.6 Integer Arguments
    §25.6(i) Function Values
    25.6.8 ζ ( 2 ) = 3 k = 1 1 k 2 ( 2 k k ) .
    25.6.9 ζ ( 3 ) = 5 2 k = 1 ( 1 ) k 1 k 3 ( 2 k k ) .
    25.6.12 ζ ′′ ( 0 ) = 1 2 ( ln ( 2 π ) ) 2 + 1 2 γ 2 1 24 π 2 + γ 1 ,
    For related results see Basu and Apostol (2000).
    7: Bibliography S
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • R. B. Shirts (1993b) Algorithm 721: MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu’s differential equation for noninteger and integer order. ACM Trans. Math. Software 19 (3), pp. 391–406.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • H. M. Srivastava and J. Choi (2001) Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht.
  • S. K. Suslov (2003) An Introduction to Basic Fourier Series. Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht.
  • 8: Bibliography C
  • H. S. Carslaw (1930) Introduction to the Theory of Fourier’s Series and Integrals. 3rd edition, Macmillan, London.
  • J. R. Cash and R. V. M. Zahar (1994) A Unified Approach to Recurrence Algorithms. In Approximation and Computation (West Lafayette, IN, 1993), R. V. M. Zahar (Ed.), International Series of Computational Mathematics, Vol. 119, pp. 97–120.
  • L. D. Cloutman (1989) Numerical evaluation of the Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 71, pp. 677–699.
  • W. J. Cody (1991) Performance evaluation of programs related to the real gamma function. ACM Trans. Math. Software 17 (1), pp. 46–54.
  • J. P. Coleman (1980) A Fortran subroutine for the Bessel function J n ( x ) of order 0 to 10 . Comput. Phys. Comm. 21 (1), pp. 109–118.
  • 9: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • M. E. H. Ismail and D. W. Stanton (Eds.) (2000) q -Series from a Contemporary Perspective. Contemporary Mathematics, Vol. 254, American Mathematical Society, Providence, RI.
  • 10: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • A. N. Vavreck and W. Thompson (1984) Some novel infinite series of spherical Bessel functions. Quart. Appl. Math. 42 (3), pp. 321–324.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • H. Volkmer (2021) Fourier series representation of Ferrers function 𝖯 .