About the Project
NIST

relation to Whittaker equation

AdvancedHelp

(0.003 seconds)

1—10 of 32 matching pages

1: 13.14 Definitions and Basic Properties
Whittaker’s Equation
Standard solutions are: …
2: 31.8 Solutions via Quadratures
For m = ( m 0 , 0 , 0 , 0 ) , these solutions reduce to Hermite’s solutions (Whittaker and Watson (1927, §23.7)) of the Lamé equation in its algebraic form. …
3: 13.27 Mathematical Applications
§13.27 Mathematical Applications
The other group elements correspond to integral operators whose kernels can be expressed in terms of Whittaker functions. This identification can be used to obtain various properties of the Whittaker functions, including recurrence relations and derivatives. … For applications of Whittaker functions to the uniform asymptotic theory of differential equations with a coalescing turning point and simple pole see §§2.8(vi) and 18.15(i).
4: 33.22 Particle Scattering and Atomic and Molecular Spectra
§33.22(i) Schrödinger Equation
The relativistic motion of spinless particles in a Coulomb field, as encountered in pionic atoms and pion-nucleon scattering (Backenstoss (1970)) is described by a Klein–Gordon equation equivalent to (33.2.1); see Barnett (1981a). …The solutions to this equation are closely related to the Coulomb functions; see Greiner et al. (1985). … For scattering problems, the interior solution is then matched to a linear combination of a pair of Coulomb functions, F ( η , ρ ) and G ( η , ρ ) , or f ( ϵ , ; r ) and h ( ϵ , ; r ) , to determine the scattering S -matrix and also the correct normalization of the interior wave solutions; see Bloch et al. (1951). For bound-state problems only the exponentially decaying solution is required, usually taken to be the Whittaker function W - η , + 1 2 ( 2 ρ ) . …
5: 10.16 Relations to Other Functions
§10.16 Relations to Other Functions
Elementary Functions
Parabolic Cylinder Functions
Confluent Hypergeometric Functions
Generalized Hypergeometric Functions
6: 13.18 Relations to Other Functions
§13.18(i) Elementary Functions
§13.18(ii) Incomplete Gamma Functions
§13.18(iii) Modified Bessel Functions
§13.18(iv) Parabolic Cylinder Functions
§13.18(v) Orthogonal Polynomials
7: 23.21 Physical Applications
See, for example, Lawden (1989, Chapter 7) and Whittaker (1964, Chapters 4–6).
§23.21(ii) Nonlinear Evolution Equations
Airault et al. (1977) applies the function to an integrable classical many-body problem, and relates the solutions to nonlinear partial differential equations. For applications to soliton solutions of the Korteweg–de Vries (KdV) equation see McKean and Moll (1999, p. 91), Deconinck and Segur (2000), and Walker (1996, §8.1). …
8: Bibliography D
  • T. M. Dunster, D. A. Lutz, and R. Schäfke (1993) Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions. Proc. Roy. Soc. London Ser. A 440, pp. 37–54.
  • T. M. Dunster (1996a) Asymptotic solutions of second-order linear differential equations having almost coalescent turning points, with an application to the incomplete gamma function. Proc. Roy. Soc. London Ser. A 452, pp. 1331–1349.
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • T. M. Dunster (2004) Convergent expansions for solutions of linear ordinary differential equations having a simple pole, with an application to associated Legendre functions. Stud. Appl. Math. 113 (3), pp. 245–270.
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.
  • 9: Bibliography
  • H. Airault, H. P. McKean, and J. Moser (1977) Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math. 30 (1), pp. 95–148.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • F. M. Arscott (1964b) Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions. International Series of Monographs in Pure and Applied Mathematics, Vol. 66, Pergamon Press, The Macmillan Co., New York.
  • F. M. Arscott (1967) The Whittaker-Hill equation and the wave equation in paraboloidal co-ordinates. Proc. Roy. Soc. Edinburgh Sect. A 67, pp. 265–276.
  • 10: 28.34 Methods of Computation
    §28.34(i) Characteristic Exponents
  • (c)

    Methods described in §3.7(iv) applied to the differential equation (28.2.1) with the conditions (28.2.5) and (28.2.16).

  • (d)

    Solution of the matrix eigenvalue problem for each of the five infinite matrices that correspond to the linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4). See Zhang and Jin (1996, pp. 479–482) and §3.2(iv).

  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation28.31(i)) and eigenvalues of Lamé functions (§29.3(i)).

  • (d)

    Solution of the systems of linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4), with the conditions (28.4.9)–(28.4.12) and (28.14.5), by boundary-value methods (§3.6) to determine the Fourier coefficients. Subsequently, the Fourier series can be summed with the aid of Clenshaw’s algorithm (§3.11(ii)). See Meixner and Schäfke (1954, §2.87). This procedure can be combined with §28.34(ii)(d).