About the Project

relation to Whittaker equation

AdvancedHelp

(0.005 seconds)

1—10 of 41 matching pages

1: 13.14 Definitions and Basic Properties
โ–บ
Whittaker’s Equation
โ–บStandard solutions are: …
2: 31.8 Solutions via Quadratures
โ–บFor ๐ฆ = ( m 0 , 0 , 0 , 0 ) , these solutions reduce to Hermite’s solutions (Whittaker and Watson (1927, §23.7)) of the Lamé equation in its algebraic form. …
3: 13.27 Mathematical Applications
§13.27 Mathematical Applications
โ–บThe other group elements correspond to integral operators whose kernels can be expressed in terms of Whittaker functions. This identification can be used to obtain various properties of the Whittaker functions, including recurrence relations and derivatives. … โ–บFor applications of Whittaker functions to the uniform asymptotic theory of differential equations with a coalescing turning point and simple pole see §§2.8(vi) and 18.15(i).
4: 13.18 Relations to Other Functions
โ–บ
§13.18(i) Elementary Functions
โ–บ
§13.18(ii) Incomplete Gamma Functions
โ–บ
§13.18(iii) Modified Bessel Functions
โ–บ
§13.18(iv) Parabolic Cylinder Functions
โ–บ
§13.18(v) Orthogonal Polynomials
5: 33.16 Connection Formulas
โ–บ
§33.16(i) F โ„“ and G โ„“ in Terms of f and h
โ–บ
§33.16(ii) f and h in Terms of F โ„“ and G โ„“ when ฯต > 0
โ–บ
§33.16(iii) f and h in Terms of W ฮบ , ฮผ โก ( z ) when ฯต < 0
โ–บ
§33.16(iv) s and c in Terms of F โ„“ and G โ„“ when ฯต > 0
โ–บ
§33.16(v) s and c in Terms of W ฮบ , ฮผ โก ( z ) when ฯต < 0
6: 33.22 Particle Scattering and Atomic and Molecular Spectra
โ–บ
§33.22(i) Schrödinger Equation
โ–บThe relativistic motion of spinless particles in a Coulomb field, as encountered in pionic atoms and pion-nucleon scattering (Backenstoss (1970)) is described by a Klein–Gordon equation equivalent to (33.2.1); see Barnett (1981a). …The solutions to this equation are closely related to the Coulomb functions; see Greiner et al. (1985). … โ–บFor scattering problems, the interior solution is then matched to a linear combination of a pair of Coulomb functions, F โ„“ โก ( ฮท , ฯ ) and G โ„“ โก ( ฮท , ฯ ) , or f โก ( ฯต , โ„“ ; r ) and h โก ( ฯต , โ„“ ; r ) , to determine the scattering S -matrix and also the correct normalization of the interior wave solutions; see Bloch et al. (1951). โ–บFor bound-state problems only the exponentially decaying solution is required, usually taken to be the Whittaker function W ฮท , โ„“ + 1 2 โก ( 2 โข ฯ ) . …
7: 10.16 Relations to Other Functions
§10.16 Relations to Other Functions
โ–บ
Elementary Functions
โ–บ
Parabolic Cylinder Functions
โ–บ
Confluent Hypergeometric Functions
โ–บ
Generalized Hypergeometric Functions
8: 12.7 Relations to Other Functions
§12.7 Relations to Other Functions
โ–บ
§12.7(i) Hermite Polynomials
โ–บ
§12.7(ii) Error Functions, Dawson’s Integral, and Probability Function
โ–บ
§12.7(iii) Modified Bessel Functions
โ–บ
§12.7(iv) Confluent Hypergeometric Functions
9: 18.34 Bessel Polynomials
โ–บ
18.34.1 y n โก ( x ; a ) = F 0 2 โก ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n โข ( x 2 ) n โข F 1 1 โก ( n 2 โข n a + 2 ; 2 x ) = n ! โข ( 1 2 โข x ) n โข L n ( 1 a 2 โข n ) โก ( 2 โข x 1 ) = ( 1 2 โข x ) 1 1 2 โข a โข e 1 / x โข W 1 1 2 โข a , 1 2 โข ( a 1 ) + n โก ( 2 โข x 1 ) .
10: 33.2 Definitions and Basic Properties
โ–บ
§33.2(i) Coulomb Wave Equation
โ–บThe function F โ„“ โก ( ฮท , ฯ ) is recessive (§2.7(iii)) at ฯ = 0 , and is defined by …where M ฮบ , ฮผ โก ( z ) and M โก ( a , b , z ) are defined in §§13.14(i) and 13.2(i), and … โ–บThe functions H โ„“ ± โก ( ฮท , ฯ ) are defined by …where W ฮบ , ฮผ โก ( z ) , U โก ( a , b , z ) are defined in §§13.14(i) and 13.2(i), …