About the Project

relation to Lamé equation

AdvancedHelp

(0.003 seconds)

1—10 of 19 matching pages

1: 29.2 Differential Equations
For the Weierstrass function see §23.2(ii). …
2: 31.8 Solutions via Quadratures
For 𝐦 = ( m 0 , 0 , 0 , 0 ) , these solutions reduce to Hermite’s solutions (Whittaker and Watson (1927, §23.7)) of the Lamé equation in its algebraic form. …
3: 29.12 Definitions
§29.12 Definitions
§29.12(i) Elliptic-Function Form
There are eight types of Lamé polynomials, defined as follows: …In consequence they are doubly-periodic meromorphic functions of z . …
§29.12(ii) Algebraic Form
4: Bibliography
  • H. Airault, H. P. McKean, and J. Moser (1977) Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math. 30 (1), pp. 95–148.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • F. M. Arscott and I. M. Khabaza (1962) Tables of Lamé Polynomials. Pergamon Press, The Macmillan Co., New York.
  • F. M. Arscott (1964a) Integral equations and relations for Lamé functions. Quart. J. Math. Oxford Ser. (2) 15, pp. 103–115.
  • F. M. Arscott (1964b) Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions. International Series of Monographs in Pure and Applied Mathematics, Vol. 66, Pergamon Press, The Macmillan Co., New York.
  • 5: 31.7 Relations to Other Functions
    §31.7 Relations to Other Functions
    §31.7(i) Reductions to the Gauss Hypergeometric Function
    §31.7(ii) Relations to Lamé Functions
    equation (31.2.1) becomes Lamé’s equation with independent variable ζ ; compare (29.2.1) and (31.2.8). The solutions (31.3.1) and (31.3.5) transform into even and odd solutions of Lamé’s equation, respectively. …
    6: 29.6 Fourier Series
    §29.6 Fourier Series
    §29.6(i) Function 𝐸𝑐 ν 2 m ( z , k 2 )
    In addition, if H satisfies (29.6.2), then (29.6.3) applies. … Consequently, 𝐸𝑐 ν 2 m ( z , k 2 ) reduces to a Lamé polynomial; compare §§29.12(i) and 29.15(i). …
    §29.6(ii) Function 𝐸𝑐 ν 2 m + 1 ( z , k 2 )
    7: Bibliography S
  • D. Schmidt and G. Wolf (1979) A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations. SIAM J. Math. Anal. 10 (4), pp. 823–838.
  • R. Shail (1978) Lamé polynomial solutions to some elliptic crack and punch problems. Internat. J. Engrg. Sci. 16 (8), pp. 551–563.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • B. D. Sleeman (1968a) Integral equations and relations for Lamé functions and ellipsoidal wave functions. Proc. Cambridge Philos. Soc. 64, pp. 113–126.
  • B. I. Suleĭmanov (1987) The relation between asymptotic properties of the second Painlevé equation in different directions towards infinity. Differ. Uravn. 23 (5), pp. 834–842 (Russian).
  • 8: 28.34 Methods of Computation
    §28.34(i) Characteristic Exponents
  • (c)

    Methods described in §3.7(iv) applied to the differential equation (28.2.1) with the conditions (28.2.5) and (28.2.16).

  • (d)

    Solution of the matrix eigenvalue problem for each of the five infinite matrices that correspond to the linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4). See Zhang and Jin (1996, pp. 479–482) and §3.2(iv).

  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation28.31(i)) and eigenvalues of Lamé functions (§29.3(i)).

  • (d)

    Solution of the systems of linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4), with the conditions (28.4.9)–(28.4.12) and (28.14.5), by boundary-value methods (§3.6) to determine the Fourier coefficients. Subsequently, the Fourier series can be summed with the aid of Clenshaw’s algorithm (§3.11(ii)). See Meixner and Schäfke (1954, §2.87). This procedure can be combined with §28.34(ii)(d).

  • 9: Errata
  • Source citations

    Specific source citations and proof metadata are now given for all equations in Chapter 25 Zeta and Related Functions.

  • Additions

    Section: 15.9(v) Complete Elliptic Integrals. Equations: (11.11.9_5), (11.11.13_5), Intermediate equality in (15.4.27) which relates to F ( a , a ; a + 1 ; 1 2 ) , (15.4.34), (19.5.4_1), (19.5.4_2) and (19.5.4_3).

  • Equations (10.22.37), (10.22.38), (14.17.6)–(14.17.9)

    The Kronecker delta symbols have been moved furthest to the right, as is common convention for orthogonality relations.

  • Equation (9.7.2)

    Following a suggestion from James McTavish on 2017-04-06, the recurrence relation u k = ( 6 k 5 ) ( 6 k 3 ) ( 6 k 1 ) ( 2 k 1 ) 216 k u k 1 was added to Equation (9.7.2).

  • Chapter 25 Zeta and Related Functions

    A number of additions and changes have been made to the metadata to reflect new and changed references as well as to how some equations have been derived.

  • 10: 29.1 Special Notation
    All derivatives are denoted by differentials, not by primes. The main functions treated in this chapter are the eigenvalues a ν 2 m ( k 2 ) , a ν 2 m + 1 ( k 2 ) , b ν 2 m + 1 ( k 2 ) , b ν 2 m + 2 ( k 2 ) , the Lamé functions 𝐸𝑐 ν 2 m ( z , k 2 ) , 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) , 𝐸𝑠 ν 2 m + 1 ( z , k 2 ) , 𝐸𝑠 ν 2 m + 2 ( z , k 2 ) , and the Lamé polynomials 𝑢𝐸 2 n m ( z , k 2 ) , 𝑠𝐸 2 n + 1 m ( z , k 2 ) , 𝑐𝐸 2 n + 1 m ( z , k 2 ) , 𝑑𝐸 2 n + 1 m ( z , k 2 ) , 𝑠𝑐𝐸 2 n + 2 m ( z , k 2 ) , 𝑠𝑑𝐸 2 n + 2 m ( z , k 2 ) , 𝑐𝑑𝐸 2 n + 2 m ( z , k 2 ) , 𝑠𝑐𝑑𝐸 2 n + 3 m ( z , k 2 ) . … Other notations that have been used are as follows: Ince (1940a) interchanges a ν 2 m + 1 ( k 2 ) with b ν 2 m + 1 ( k 2 ) . The relation to the Lamé functions L c ν ( m ) , L s ν ( m ) of Jansen (1977) is given by …The relation to the Lamé functions Ec ν m , Es ν m of Ince (1940b) is given by …