relation to Bernoulli numbers
(0.003 seconds)
1—10 of 30 matching pages
1: 24.15 Related Sequences of Numbers
2: 24.4 Basic Properties
…
►
§24.4(ix) Relations to Other Functions
►For the relation of Bernoulli numbers to the Riemann zeta function see §25.6, and to the Eulerian numbers see (26.14.11).3: 26.8 Set Partitions: Stirling Numbers
…
►
§26.8(vi) Relations to Bernoulli Numbers
…4: 24.17 Mathematical Applications
…
►
§24.17(iii) Number Theory
…5: 24.19 Methods of Computation
…
►
§24.19(i) Bernoulli and Euler Numbers and Polynomials
►Equations (24.5.3) and (24.5.4) enable and to be computed by recurrence. … ►§24.19(ii) Values of Modulo
►For number-theoretic applications it is important to compute for ; in particular to find the irregular pairs for which . We list here three methods, arranged in increasing order of efficiency. …6: 25.6 Integer Arguments
…
►
§25.6(i) Function Values
…7: 24.16 Generalizations
§24.16 Generalizations
… ►Degenerate Bernoulli Numbers
… ►§24.16(ii) Character Analogs
… ►Generalized Bernoulli numbers and polynomials belonging to are defined by … ►In no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); -adic integer order Bernoulli numbers (Adelberg (1996)); -adic -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).8: 25.1 Special Notation
…
►
►
…
►The main related functions are the Hurwitz zeta function , the dilogarithm , the polylogarithm (also known as Jonquière’s function ), Lerch’s transcendent , and the Dirichlet -functions .
nonnegative integers. | |
prime number. | |
… | |
Bernoulli number and polynomial (§24.2(i)). | |
periodic Bernoulli function . | |
… | |
primes | on function symbols: derivatives with respect to argument. |
9: Bibliography T
…
►
New congruences for the Bernoulli numbers.
Math. Comp. 48 (177), pp. 341–350.
…
►
Bernoulli polynomials old and new: Generalizations and asymptotics.
CWI Quarterly 8 (1), pp. 47–66.
…
►
Explicit formulas for the Bernoulli and Euler polynomials and numbers.
Abh. Math. Sem. Univ. Hamburg 61, pp. 175–180.
…
►
On the theory of the Bernoulli polynomials and numbers.
J. Math. Anal. Appl. 104 (2), pp. 309–350.
►
Hyperspherical elliptic harmonics and their relation to the Heun equation.
Phys. Rev. A 63 (032510), pp. 1–8.
…
10: Bibliography S
…
►
A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations.
SIAM J. Math. Anal. 10 (4), pp. 823–838.
…
►
Staudt and arithmetical properties of Bernoulli numbers.
Historia Sci. (2) 5 (1), pp. 69–74.
►
About von Staudt congruences for Bernoulli numbers.
Comment. Math. Univ. St. Paul. 48 (2), pp. 137–144.
►
On the generalized Bernoulli numbers that belong to unequal characters.
Rev. Mat. Iberoamericana 16 (3), pp. 459–475.
►
Structure of avoided crossings for eigenvalues related to equations of Heun’s class.
J. Phys. A 30 (2), pp. 673–687.
…