About the Project

regular solutions

AdvancedHelp

(0.002 seconds)

11—20 of 28 matching pages

11: 15.11 Riemann’s Differential Equation
The importance of (15.10.1) is that any homogeneous linear differential equation of the second order with at most three distinct singularities, all regular, in the extended plane can be transformed into (15.10.1). The most general form is given by … denotes the set of solutions of (15.10.1).
§15.11(ii) Transformation Formulas
The reduction of a general homogeneous linear differential equation of the second order with at most three regular singularities to the hypergeometric differential equation is given by …
12: 31.12 Confluent Forms of Heun’s Equation
Confluent forms of Heun’s differential equation (31.2.1) arise when two or more of the regular singularities merge to form an irregular singularity. … This has regular singularities at z = 0 and 1 , and an irregular singularity of rank 1 at z = . Mathieu functions (Chapter 28), spheroidal wave functions (Chapter 30), and Coulomb spheroidal functions (§30.12) are special cases of solutions of the confluent Heun equation. … This has a regular singularity at z = 0 , and an irregular singularity at of rank 2 . … This has one singularity, an irregular singularity of rank 3 at z = . …
13: 13.2 Definitions and Basic Properties
This equation has a regular singularity at the origin with indices 0 and 1 b , and an irregular singularity at infinity of rank one. …In effect, the regular singularities of the hypergeometric differential equation at b and coalesce into an irregular singularity at .
Standard Solutions
§13.2(v) Numerically Satisfactory Solutions
14: Bibliography
  • J. Abad and J. Sesma (1995) Computation of the regular confluent hypergeometric function. The Mathematica Journal 5 (4), pp. 74–76.
  • A. S. Abdullaev (1985) Asymptotics of solutions of the generalized sine-Gordon equation, the third Painlevé equation and the d’Alembert equation. Dokl. Akad. Nauk SSSR 280 (2), pp. 265–268 (Russian).
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • H. Airault (1979) Rational solutions of Painlevé equations. Stud. Appl. Math. 61 (1), pp. 31–53.
  • F. M. Arscott (1956) Perturbation solutions of the ellipsoidal wave equation. Quart. J. Math. Oxford Ser. (2) 7, pp. 161–174.
  • 15: 13.14 Definitions and Basic Properties
    It has a regular singularity at the origin with indices 1 2 ± μ , and an irregular singularity at infinity of rank one.
    Standard Solutions
    Standard solutions are: …
    §13.14(v) Numerically Satisfactory Solutions
    Fundamental pairs of solutions of (13.14.1) that are numerically satisfactory (§2.7(iv)) in the neighborhood of infinity are …
    16: 10.2 Definitions
    This differential equation has a regular singularity at z = 0 with indices ± ν , and an irregular singularity at z = of rank 1 ; compare §§2.7(i) and 2.7(ii).
    §10.2(ii) Standard Solutions
    This solution of (10.2.1) is an analytic function of z , except for a branch point at z = 0 when ν is not an integer. … Each solution has a branch point at z = 0 for all ν . …
    §10.2(iii) Numerically Satisfactory Pairs of Solutions
    17: 2.7 Differential Equations
    All solutions are analytic at an ordinary point, and their Taylor-series expansions are found by equating coefficients. …
    18: 10.47 Definitions and Basic Properties
    Equations (10.47.1) and (10.47.2) each have a regular singularity at z = 0 with indices n , n 1 , and an irregular singularity at z = of rank 1 ; compare §§2.7(i)2.7(ii). …
    §10.47(ii) Standard Solutions
    §10.47(iii) Numerically Satisfactory Pairs of Solutions
    For (10.47.1) numerically satisfactory pairs of solutions are given by Table 10.2.1 with the symbols J , Y , H , and ν replaced by 𝗃 , 𝗒 , 𝗁 , and n , respectively. For (10.47.2) numerically satisfactory pairs of solutions are 𝗂 n ( 1 ) ( z ) and 𝗄 n ( z ) in the right half of the z -plane, and 𝗂 n ( 1 ) ( z ) and 𝗄 n ( z ) in the left half of the z -plane. …
    19: 30.2 Differential Equations
    30.2.1 d d z ( ( 1 z 2 ) d w d z ) + ( λ + γ 2 ( 1 z 2 ) μ 2 1 z 2 ) w = 0 .
    This equation has regular singularities at z = ± 1 with exponents ± 1 2 μ and an irregular singularity of rank 1 at z = (if γ 0 ). …
    30.2.4 ( ζ 2 γ 2 ) d 2 w d ζ 2 + 2 ζ d w d ζ + ( ζ 2 λ γ 2 γ 2 μ 2 ζ 2 γ 2 ) w = 0 .
    20: 29.2 Differential Equations
    This equation has regular singularities at the points 2 p K + ( 2 q + 1 ) i K , where p , q , and K , K are the complete elliptic integrals of the first kind with moduli k , k ( = ( 1 k 2 ) 1 / 2 ) , respectively; see §19.2(ii). In general, at each singularity each solution of (29.2.1) has a branch point (§2.7(i)). …