About the Project

regular%20singularity

AdvancedHelp

(0.003 seconds)

1—10 of 197 matching pages

1: 33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • 2: 33.3 Graphics
    §33.3(i) Line Graphs of the Coulomb Radial Functions F ( η , ρ ) and G ( η , ρ )
    See accompanying text
    Figure 33.3.1: F ( η , ρ ) , G ( η , ρ ) with = 0 , η = 2 . Magnify
    See accompanying text
    Figure 33.3.2: F ( η , ρ ) , G ( η , ρ ) with = 0 , η = 0 . Magnify
    See accompanying text
    Figure 33.3.3: F ( η , ρ ) , G ( η , ρ ) with = 0 , η = 2 . … Magnify
    §33.3(ii) Surfaces of the Coulomb Radial Functions F 0 ( η , ρ ) and G 0 ( η , ρ )
    3: 33.2 Definitions and Basic Properties
    §33.2(i) Coulomb Wave Equation
    This differential equation has a regular singularity at ρ = 0 with indices + 1 and , and an irregular singularity of rank 1 at ρ = (§§2.7(i), 2.7(ii)). …
    §33.2(ii) Regular Solution F ( η , ρ )
    The function F ( η , ρ ) is recessive (§2.7(iii)) at ρ = 0 , and is defined by … F ( η , ρ ) is a real and analytic function of ρ on the open interval 0 < ρ < , and also an analytic function of η when < η < . …
    4: 31.12 Confluent Forms of Heun’s Equation
    Confluent forms of Heun’s differential equation (31.2.1) arise when two or more of the regular singularities merge to form an irregular singularity. … This has regular singularities at z = 0 and 1 , and an irregular singularity of rank 1 at z = . … This has irregular singularities at z = 0 and , each of rank 1 . … This has a regular singularity at z = 0 , and an irregular singularity at of rank 2 . … This has one singularity, an irregular singularity of rank 3 at z = . …
    5: 16.21 Differential Equation
    With the classification of §16.8(i), when p < q the only singularities of (16.21.1) are a regular singularity at z = 0 and an irregular singularity at z = . When p = q the only singularities of (16.21.1) are regular singularities at z = 0 , ( 1 ) p m n , and . …
    6: 31.14 General Fuchsian Equation
    The general second-order Fuchsian equation with N + 1 regular singularities at z = a j , j = 1 , 2 , , N , and at , is given by
    31.14.1 d 2 w d z 2 + ( j = 1 N γ j z a j ) d w d z + ( j = 1 N q j z a j ) w = 0 , j = 1 N q j = 0 .
    The exponents at the finite singularities a j are { 0 , 1 γ j } and those at are { α , β } , where …The three sets of parameters comprise the singularity parameters a j , the exponent parameters α , β , γ j , and the N 2 free accessory parameters q j . …
    31.14.3 w ( z ) = ( j = 1 N ( z a j ) γ j / 2 ) W ( z ) ,
    7: 33.14 Definitions and Basic Properties
    §33.14(i) Coulomb Wave Equation
    Again, there is a regular singularity at r = 0 with indices + 1 and , and an irregular singularity of rank 1 at r = . …
    §33.14(ii) Regular Solution f ( ϵ , ; r )
    33.14.4 f ( ϵ , ; r ) = κ + 1 M κ , + 1 2 ( 2 r / κ ) / ( 2 + 1 ) ! ,
    33.14.5 f ( ϵ , ; r ) = ( 2 r ) + 1 e r / κ M ( + 1 κ , 2 + 2 , 2 r / κ ) / ( 2 + 1 ) ! ,
    8: Bibliography
  • J. Abad and J. Sesma (1995) Computation of the regular confluent hypergeometric function. The Mathematica Journal 5 (4), pp. 74–76.
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • A. R. Ahmadi and S. E. Widnall (1985) Unsteady lifting-line theory as a singular-perturbation problem. J. Fluid Mech 153, pp. 59–81.
  • H. H. Aly, H. J. W. Müller-Kirsten, and N. Vahedi-Faridi (1975) Scattering by singular potentials with a perturbation – Theoretical introduction to Mathieu functions. J. Mathematical Phys. 16, pp. 961–970.
  • J. Avron and B. Simon (1982) Singular Continuous Spectrum for a Class of Almost Periodic Jacobi Matrices. Bulletin of the American Mathematical Society 6 (1), pp. 81–85.
  • 9: 16.8 Differential Equations
    If z 0 is not an ordinary point but ( z z 0 ) n j f j ( z ) , j = 0 , 1 , , n 1 , are analytic at z = z 0 , then z 0 is a regular singularity. All other singularities are irregular. … … Equation (16.8.4) has a regular singularity at z = 0 , and an irregular singularity at z = , whereas (16.8.5) has regular singularities at z = 0 , 1 , and . … Thus in the case p = q the regular singularities of the function on the left-hand side at α and coalesce into an irregular singularity at . …
    10: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. R. Barnett (1981a) An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy. Comput. Phys. Comm. 21 (3), pp. 297–314.
  • M. V. Berry (1981) Singularities in Waves and Rays. In Les Houches Lecture Series Session XXXV, R. Balian, M. Kléman, and J.-P. Poirier (Eds.), Vol. 35, pp. 453–543.
  • N. Bleistein (1966) Uniform asymptotic expansions of integrals with stationary point near algebraic singularity. Comm. Pure Appl. Math. 19, pp. 353–370.
  • W. G. C. Boyd and T. M. Dunster (1986) Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions. SIAM J. Math. Anal. 17 (2), pp. 422–450.