About the Project

reflection properties in ν

AdvancedHelp

(0.003 seconds)

1—10 of 13 matching pages

1: 28.12 Definitions and Basic Properties
28.12.2 λ ν ( q ) = λ ν ( q ) = λ ν ( q ) .
28.12.10 me ν ( z , q ) ¯ = me ν ¯ ( z ¯ , q ¯ ) .
28.12.15 se ν ( z , q ) = se ν ( z , q ) = se ν ( z , q ) .
2: 28.5 Second Solutions fe n , ge n
S 2 m + 2 ( q ) = S 2 m + 2 ( q ) .
3: 28.2 Definitions and Basic Properties
Change of Sign of q
28.2.37 se 2 n + 2 ( z , q ) = ( 1 ) n se 2 n + 2 ( 1 2 π z , q ) .
4: 28.4 Fourier Series
§28.4(v) Change of Sign of q
5: 31.8 Solutions via Quadratures
The curve Γ reflects the finite-gap property of Equation (31.2.1) when the exponent parameters satisfy (31.8.1) for m j . …
6: 10.68 Modulus and Phase Functions
§10.68(ii) Basic Properties
In place of (10.68.7), …
ϕ ν ( x ) = ϕ ν ( x ) + ν π .
§10.68(iv) Further Properties
Additional properties of the modulus and phase functions are given in Young and Kirk (1964, pp. xi–xv). …
7: 28.31 Equations of Whittaker–Hill and Ince
It has been discussed in detail by Arscott (1967) for k 2 < 0 , and by Urwin and Arscott (1970) for k 2 > 0 . … in (28.31.1). … and m = 0 , 1 , , n in all cases. … If p and ξ 0 in such a way that p ξ 2 q , then in the notation of §§28.2(v) and 28.2(vi)More important are the double orthogonality relations for p 1 p 2 or m 1 m 2 or both, given by …
8: 10.61 Definitions and Basic Properties
§10.61 Definitions and Basic Properties
Most properties of ber ν x , bei ν x , ker ν x , and kei ν x follow straightforwardly from the above definitions and results given in preceding sections of this chapter. …
§10.61(iii) Reflection Formulas for Arguments
In particular, …
§10.61(iv) Reflection Formulas for Orders
9: 11.9 Lommel Functions
Reflection Formulas
§11.9(ii) Expansions in Series of Bessel Functions
11.9.7 s μ , ν ( z ) = 2 μ + 1 k = 0 ( 2 k + μ + 1 ) Γ ( k + μ + 1 ) k ! ( 2 k + μ ν + 1 ) ( 2 k + μ + ν + 1 ) J 2 k + μ + 1 ( z ) ,
11.9.8 s μ , ν ( z ) = 2 ( μ + ν 1 ) / 2 Γ ( 1 2 μ + 1 2 ν + 1 2 ) z ( μ + 1 ν ) / 2 k = 0 ( 1 2 z ) k k ! ( 2 k + μ ν + 1 ) J k + 1 2 ( μ + ν + 1 ) ( z ) .
For descriptive properties of s μ , ν ( x ) see Steinig (1972). …
10: Bibliography F
  • J. L. Fields and J. Wimp (1961) Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15 (76), pp. 390–395.
  • A. S. Fokas and Y. C. Yortsos (1981) The transformation properties of the sixth Painlevé equation and one-parameter families of solutions. Lett. Nuovo Cimento (2) 30 (17), pp. 539–544.
  • T. Fort (1948) Finite Differences and Difference Equations in the Real Domain. Clarendon Press, Oxford.
  • C. K. Frederickson and P. L. Marston (1992) Transverse cusp diffraction catastrophes produced by the reflection of ultrasonic tone bursts from a curved surface in water. J. Acoust. Soc. Amer. 92 (5), pp. 2869–2877.
  • C. K. Frederickson and P. L. Marston (1994) Travel time surface of a transverse cusp caustic produced by reflection of acoustical transients from a curved metal surface. J. Acoust. Soc. Amer. 95 (2), pp. 650–660.