About the Project
NIST

reflection formulas

AdvancedHelp

(0.001 seconds)

1—10 of 20 matching pages

1: 25.4 Reflection Formulas
§25.4 Reflection Formulas
25.4.1 ζ ( 1 - s ) = 2 ( 2 π ) - s cos ( 1 2 π s ) Γ ( s ) ζ ( s ) ,
25.4.2 ζ ( s ) = 2 ( 2 π ) s - 1 sin ( 1 2 π s ) Γ ( 1 - s ) ζ ( 1 - s ) .
25.4.3 ξ ( s ) = ξ ( 1 - s ) ,
2: 5.21 Methods of Computation
For the left half-plane we can continue the backward recurrence or make use of the reflection formula (5.5.3). …
3: 5.5 Functional Relations
§5.5(ii) Reflection
5.5.3 Γ ( z ) Γ ( 1 - z ) = π / sin ( π z ) , z 0 , ± 1 , ,
4: 10.61 Definitions and Basic Properties
§10.61(iii) Reflection Formulas for Arguments
§10.61(iv) Reflection Formulas for Orders
5: 14.7 Integer Degree and Order
§14.7(iii) Reflection Formulas
6: 4.37 Inverse Hyperbolic Functions
§4.37(iii) Reflection Formulas
7: 12.2 Differential Equations
§12.2(iv) Reflection Formulas
8: 11.9 Lommel Functions
Reflection Formulas
9: 10.47 Definitions and Basic Properties
§10.47(v) Reflection Formulas
10: 35.7 Gaussian Hypergeometric Function of Matrix Argument
Reflection Formula