# real

(0.001 seconds)

## 1—10 of 637 matching pages

##### 1: 32.1 Special Notation
 $m,n$ integers. real variable. complex variable. real parameter.
##### 3: 1.1 Special Notation
 $x,y$ real variables. complex variable in §§1.2(i), 1.9–1.11, real variable in §§1.5–1.6. …
##### 4: 15.7 Continued Fractions
15.7.1 $\frac{\mathbf{F}\left(a,b;c;z\right)}{\mathbf{F}\left(a,b+1;c+1;z\right)}=t_{0% }-\cfrac{u_{1}z}{t_{1}-\cfrac{u_{2}z}{t_{2}-\cfrac{u_{3}z}{t_{3}-\cdots}}},$
15.7.3 $\frac{\mathbf{F}\left(a,b;c;z\right)}{\mathbf{F}\left(a,b+1;c+1;z\right)}=v_{0% }-\cfrac{w_{1}}{v_{1}-\cfrac{w_{2}}{v_{2}-\cfrac{w_{3}}{v_{3}-\cdots}}},$
If $\Re z<\tfrac{1}{2}$, then
15.7.5 $\frac{\mathbf{F}\left(a,b;c;z\right)}{\mathbf{F}\left(a+1,b+1;c+1;z\right)}={x% _{0}+\cfrac{y_{1}}{x_{1}+\cfrac{y_{2}}{x_{2}+\cfrac{y_{3}}{x_{3}+\cdots}}}},$
##### 5: 8.14 Integrals
8.14.1 $\int_{0}^{\infty}e^{-ax}\frac{\gamma\left(b,x\right)}{\Gamma\left(b\right)}% \mathrm{d}x=\frac{(1+a)^{-b}}{a},$ $\Re a>0$, $\Re b>-1$,
8.14.2 $\int_{0}^{\infty}e^{-ax}\Gamma\left(b,x\right)\mathrm{d}x=\Gamma\left(b\right)% \frac{1-(1+a)^{-b}}{a},$ $\Re a>-1$, $\Re b>-1$.
8.14.3 $\int_{0}^{\infty}x^{a-1}\gamma\left(b,x\right)\mathrm{d}x=-\frac{\Gamma\left(a% +b\right)}{a},$ $\Re a<0$, $\Re(a+b)>0$,
8.14.4 $\int_{0}^{\infty}x^{a-1}\Gamma\left(b,x\right)\mathrm{d}x=\frac{\Gamma\left(a+% b\right)}{a},$ $\Re a>0$, $\Re(a+b)>0$,
8.14.6 $\int_{0}^{\infty}x^{a-1}e^{-sx}\Gamma\left(b,x\right)\mathrm{d}x=\frac{\Gamma% \left(a+b\right)}{a(1+s)^{a+b}}\*F\left(1,a+b;1+a;s/(1+s)\right),$ $\Re s>-1$, $\Re(a+b)>0$, $\Re a>0$.
##### 6: 27.4 Euler Products and Dirichlet Series
27.4.3 $\zeta\left(s\right)=\sum_{n=1}^{\infty}n^{-s}=\prod_{p}(1-p^{-s})^{-1},$ $\Re s>1$.
27.4.5 $\sum_{n=1}^{\infty}\mu\left(n\right)n^{-s}=\frac{1}{\zeta\left(s\right)},$ $\Re s>1$,
27.4.6 $\sum_{n=1}^{\infty}\phi\left(n\right)n^{-s}=\frac{\zeta\left(s-1\right)}{\zeta% \left(s\right)},$ $\Re s>2$,
27.4.7 $\sum_{n=1}^{\infty}\lambda\left(n\right)n^{-s}=\frac{\zeta\left(2s\right)}{% \zeta\left(s\right)},$ $\Re s>1$,
27.4.11 $\sum_{n=1}^{\infty}\sigma_{\alpha}\left(n\right)n^{-s}=\zeta\left(s\right)% \zeta\left(s-\alpha\right),$ $\Re s>\max(1,1+\Re\alpha)$,
##### 7: 4.29 Graphics
###### §4.29(i) Real Arguments Figure 4.29.6: Principal values of arccsch ⁡ x and arcsech ⁡ x . … Magnify
##### 8: 31.3 Basic Solutions
31.3.5 $z^{1-\gamma}\mathit{H\!\ell}\left(a,(a\delta+\epsilon)(1-\gamma)+q;\alpha+1-% \gamma,\beta+1-\gamma,2-\gamma,\delta;z\right).$
31.3.6 $\mathit{H\!\ell}\left(1-a,\alpha\beta-q;\alpha,\beta,\delta,\gamma;1-z\right),$
31.3.8 $\mathit{H\!\ell}\left(\frac{a}{a-1},\frac{\alpha\beta a-q}{a-1};\alpha,\beta,% \epsilon,\delta;\frac{a-z}{a-1}\right),$
31.3.12 $\mathit{H\!\ell}\left(1/a,q/a;\alpha,\beta,\gamma,\alpha+\beta+1-\gamma-\delta% ;z/a\right),$
##### 9: 4.15 Graphics
###### §4.15(i) Real Arguments
Figure 4.15.7 illustrates the conformal mapping of the strip $-\tfrac{1}{2}\pi<\Re z<\tfrac{1}{2}\pi$ onto the whole $w$-plane cut along the real axis from $-\infty$ to $-1$ and $1$ to $\infty$, where $w=\sin z$ and $z=\operatorname{arcsin}w$ (principal value). …Lines parallel to the real axis in the $z$-plane map onto ellipses in the $w$-plane with foci at $w=\pm 1$, and lines parallel to the imaginary axis in the $z$-plane map onto rectangular hyperbolas confocal with the ellipses. In the labeling of corresponding points $r$ is a real parameter that can lie anywhere in the interval $(0,\infty)$. … Figure 4.15.13: arccsc ⁡ ( x + i ⁢ y ) (principal value). There is a branch cut along the real axis from - 1 to 1 . Magnify 3D Help
##### 10: 5.1 Special Notation
 $j,m,n$ nonnegative integers. … real variables. … real or complex variables with $|q|<1$. …