radial
(0.001 seconds)
1—10 of 42 matching pages
1: 30.11 Radial Spheroidal Wave Functions
§30.11 Radial Spheroidal Wave Functions
►§30.11(i) Definitions
… ►Connection Formulas
… ►§30.11(ii) Graphics
… ►§30.11(iv) Wronskian
…2: 28.20 Definitions and Basic Properties
…
►
§28.20(iv) Radial Mathieu Functions ,
… ►
28.20.15
,
►
28.20.16
.
…
►
§28.20(vii) Shift of Variable
… ►And for the corresponding identities for the radial functions use (28.20.15) and (28.20.16).3: 30.17 Tables
§30.17 Tables
… ►Hanish et al. (1970) gives and , , and their first derivatives, for , , . The range of is given by if , or , if . Precision is 18S.
4: 33.3 Graphics
…
►
§33.3(i) Line Graphs of the Coulomb Radial Functions and
… ► ► … ► ►§33.3(ii) Surfaces of the Coulomb Radial Functions and
…5: 28.21 Graphics
6: 30.1 Special Notation
…
►The main functions treated in this chapter are the eigenvalues and the spheroidal wave functions , , , , and , .
…
►Flammer (1957) and Abramowitz and Stegun (1964) use for , for , and
…
7: 30.18 Software
8: 33.5 Limiting Forms for Small , Small , or Large
9: 33.23 Methods of Computation
…
►Use of extended-precision arithmetic increases the radial range that yields accurate results, but eventually other methods must be employed, for example, the asymptotic expansions of §§33.11 and 33.21.
…
►Inside the turning points, that is, when , there can be a loss of precision by a factor of approximately .
…
►Curtis (1964a, §10) describes the use of series, radial integration, and other methods to generate the tables listed in §33.24.
…
►WKBJ approximations (§2.7(iii)) for are presented in Hull and Breit (1959) and Seaton and Peach (1962: in Eq.
…
►Hull and Breit (1959) and Barnett (1981b) give WKBJ approximations for and in the region inside the turning point: .