About the Project

quantum%20field%20theory

AdvancedHelp

(0.002 seconds)

10 matching pages

1: Bibliography P
  • R. B. Paris and W. N.-C. Sy (1983) Influence of equilibrium shear flow along the magnetic field on the resistive tearing instability. Phys. Fluids 26 (10), pp. 2966–2975.
  • G. Parisi (1988) Statistical Field Theory. Addison-Wesley, Reading, MA.
  • T. Pearcey (1946) The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic. Philos. Mag. (7) 37, pp. 311–317.
  • L. Piela (2014) Ideas of Quantum Chemistry. second edition, Elsevier, Amsterdam-New York.
  • S. Pokorski (1987) Gauge Field Theories. Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge.
  • 2: Bibliography G
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • D. Gómez-Ullate and R. Milson (2014) Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials. J. Phys. A 47 (1), pp. 015203, 26 pp..
  • K. Gottfried and T. Yan (2004) Quantum mechanics: fundamentals. Second edition, Springer-Verlag, New York.
  • C. H. Greene, U. Fano, and G. Strinati (1979) General form of the quantum-defect theory. Phys. Rev. A 19 (4), pp. 1485–1509.
  • W. Greiner, B. Müller, and J. Rafelski (1985) Quantum Electrodynamics of Strong Fields: With an Introduction into Modern Relativistic Quantum Mechanics. Texts and Monographs in Physics, Springer.
  • 3: Bibliography K
  • V. Kac and P. Cheung (2002) Quantum Calculus. Universitext, Springer-Verlag, New York.
  • E. Kanzieper (2002) Replica field theories, Painlevé transcendents, and exact correlation functions. Phys. Rev. Lett. 89 (25), pp. (250201–1)–(250201–4).
  • C. Kassel (1995) Quantum Groups. Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York.
  • R. P. Kerr (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11 (5), pp. 237–238.
  • E. J. Konopinski (1981) Electromagnetic Fields and Relativistic Particles. International Series in Pure and Applied Physics, McGraw-Hill Book Co., New York.
  • 4: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • M. E. H. Ismail (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • C. Itzykson and J. Drouffe (1989) Statistical Field Theory: Strong Coupling, Monte Carlo Methods, Conformal Field Theory, and Random Systems. Vol. 2, Cambridge University Press, Cambridge.
  • C. Itzykson and J. B. Zuber (1980) Quantum Field Theory. International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York.
  • 5: 18.39 Applications in the Physical Sciences
    §18.39(i) Quantum Mechanics
    The Quantum Coulomb Problem
    b) The Bohr Quantum Number
    Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. …
    6: Bibliography W
  • L. C. Washington (1997) Introduction to Cyclotomic Fields. 2nd edition, Springer-Verlag, New York.
  • W. Wasow (1985) Linear Turning Point Theory. Applied Mathematical Sciences No. 54, Springer-Verlag, New York.
  • S. W. Weinberg (2013) Lectures on Quantum Mechanics. Cambridge University Press, Cambridge, UK.
  • E. P. Wigner (1959) Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Pure and Applied Physics. Vol. 5, Academic Press, New York.
  • E. Witten (1987) Elliptic genera and quantum field theory. Comm. Math. Phys. 109 (4), pp. 525–536.
  • 7: 10.73 Physical Applications
    Laplace’s equation governs problems in heat conduction, in the distribution of potential in an electrostatic field, and in hydrodynamics in the irrotational motion of an incompressible fluid. … See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). … In the theory of plates and shells, the oscillations of a circular plate are determined by the differential equation … In quantum mechanics the spherical Bessel functions arise in the solution of the Schrödinger wave equation for a particle in a central potential. …
    8: Bibliography L
  • L. D. Landau and E. M. Lifshitz (1962) The Classical Theory of Fields. Pergamon Press, Oxford.
  • L. D. Landau and E. M. Lifshitz (1965) Quantum Mechanics: Non-relativistic Theory. Pergamon Press Ltd., Oxford.
  • E. W. Leaver (1986) Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics. J. Math. Phys. 27 (5), pp. 1238–1265.
  • A. M. Legendre (1808) Essai sur la Théorie des Nombres. 2nd edition, Courcier, Paris.
  • R. L. Liboff (2003) Kinetic Theory: Classical, Quantum, and Relativistic Descriptions. third edition, Springer, New York.
  • 9: Bibliography V
  • B. Ph. van Milligen and A. López Fraguas (1994) Expansion of vacuum magnetic fields in toroidal harmonics. Comput. Phys. Comm. 81 (1-2), pp. 74–90.
  • D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskiĭ (1988) Quantum Theory of Angular Momentum. World Scientific Publishing Co. Inc., Singapore.
  • N. Ja. Vilenkin and A. U. Klimyk (1992) Representation of Lie Groups and Special Functions. Volume 3: Classical and Quantum Groups and Special Functions. Mathematics and its Applications (Soviet Series), Vol. 75, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin (1968) Special Functions and the Theory of Group Representations. American Mathematical Society, Providence, RI.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 10: Bibliography B
  • L. E. Ballentine and S. M. McRae (1998) Moment equations for probability distributions in classical and quantum mechanics. Phys. Rev. A 58 (3), pp. 1799–1809.
  • E. Barouch, B. M. McCoy, and T. T. Wu (1973) Zero-field susceptibility of the two-dimensional Ising model near T c . Phys. Rev. Lett. 31, pp. 1409–1411.
  • R. Becker and F. Sauter (1964) Electromagnetic Fields and Interactions. Vol. I, Blaisdell, New York.
  • L. C. Biedenharn and J. D. Louck (1981) Angular Momentum in Quantum Physics: Theory and Application. Encyclopedia of Mathematics and its Applications, Vol. 8, Addison-Wesley Publishing Co., Reading, M.A..
  • L. C. Biedenharn and H. van Dam (Eds.) (1965) Quantum Theory of Angular Momentum. A Collection of Reprints and Original Papers. Academic Press, New York.