About the Project

quadratic and higher order

AdvancedHelp

(0.002 seconds)

8 matching pages

1: 24.14 Sums
§24.14(i) Quadratic Recurrence Relations
§24.14(ii) Higher-Order Recurrence Relations
2: Bibliography
  • V. S. Adamchik (1998) Polygamma functions of negative order. J. Comput. Appl. Math. 100 (2), pp. 191–199.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • G. Arutyunov and M. Staudacher (2004) Matching higher conserved charges for strings and spins. J. High Energy Phys. 2004 (3).
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 3: 15.8 Transformations of Variable
    §15.8(iii) Quadratic Transformations
    A quadratic transformation relates two hypergeometric functions, with the variable in one a quadratic function of the variable in the other, possibly combined with a fractional linear transformation. …
    §15.8(iv) Quadratic Transformations (Continued)
    This is a quadratic transformation between two cases in Group 1. … For further examples and higher-order transformations see Goursat (1881), Watson (1910), Vidūnas (2005), and Tu and Yang (2013); see also Erdélyi et al. (1953a, pp. 67 and 113–114). …
    4: 3.8 Nonlinear Equations
    If ζ is a simple zero, then the iteration converges locally and quadratically. … It converges locally and quadratically for both and . … The method converges locally and quadratically, except when the wanted quadratic factor is a multiple factor of q ( z ) . … The quadratic nature of the convergence is evident. …
    5: Bibliography C
  • B. C. Carlson and J. FitzSimons (2000) Reduction theorems for elliptic integrands with the square root of two quadratic factors. J. Comput. Appl. Math. 118 (1-2), pp. 71–85.
  • B. C. Carlson (1976) Quadratic transformations of Appell functions. SIAM J. Math. Anal. 7 (2), pp. 291–304.
  • J. Choi and A. K. Rathie (2013) An extension of a Kummer’s quadratic transformation formula with an application. Proc. Jangjeon Math. Soc. 16 (2), pp. 229–235.
  • G. Chrystal (1959a) Algebra: An Elementary Textbook for the Higher Classes of Secondary Schools and for Colleges. 6th edition, Vol. 1, Chelsea Publishing Co., New York.
  • G. Chrystal (1959b) Algebra: An Elementary Textbook for the Higher Classes of Secondary Schools and for Colleges. 6th edition, Vol. 2, Chelsea Publishing Co., New York.
  • 6: Bibliography M
  • H. Majima, K. Matsumoto, and N. Takayama (2000) Quadratic relations for confluent hypergeometric functions. Tohoku Math. J. (2) 52 (4), pp. 489–513.
  • O. I. Marichev (1983) Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables. Ellis Horwood Ltd./John Wiley & Sons, Inc, Chichester/New York.
  • H. R. McFarland and D. St. P. Richards (2001) Exact misclassification probabilities for plug-in normal quadratic discriminant functions. I. The equal-means case. J. Multivariate Anal. 77 (1), pp. 21–53.
  • H. R. McFarland and D. St. P. Richards (2002) Exact misclassification probabilities for plug-in normal quadratic discriminant functions. II. The heterogeneous case. J. Multivariate Anal. 82 (2), pp. 299–330.
  • M. E. Muldoon (1977) Higher monotonicity properties of certain Sturm-Liouville functions. V. Proc. Roy. Soc. Edinburgh Sect. A 77 (1-2), pp. 23–37.
  • 7: Bibliography G
  • M. J. Gander and A. H. Karp (2001) Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quant. Spectrosc. Radiat. Transfer 68 (2), pp. 213–223.
  • I. Gargantini and P. Henrici (1967) A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21 (97), pp. 18–29.
  • A. Gil, J. Segura, and N. M. Temme (2002d) Evaluation of the modified Bessel function of the third kind of imaginary orders. J. Comput. Phys. 175 (2), pp. 398–411.
  • A. Gil, J. Segura, and N. M. Temme (2004a) Algorithm 831: Modified Bessel functions of imaginary order and positive argument. ACM Trans. Math. Software 30 (2), pp. 159–164.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 8: Errata
    This especially included updated information on matrix analysis, measure theory, spectral analysis, and a new section on linear second order differential operators and eigenfunction expansions. … The specific updates to Chapter 18 include some results for general orthogonal polynomials including quadratic transformations, uniqueness of orthogonality measure and completeness, moments, continued fractions, and some special classes of orthogonal polynomials. … The specific updates to Chapter 1 include the addition of an entirely new subsection §1.18 entitled “Linear Second Order Differential Operators and Eigenfunction Expansions” which is a survey of the formal spectral analysis of second order differential operators. …
  • Notation

    In §3.7(iii), the symbol 𝐀 P is now being used in several places instead of 𝐀 in order to disambiguate symbols.

  • Section 17.9

    The title was changed from Transformations of Higher ϕ r r Functions to Further Transformations of ϕ r r + 1 Functions.