About the Project

q-binomial%20series

AdvancedHelp

(0.005 seconds)

1—10 of 336 matching pages

1: 17.5 Ο• 0 0 , Ο• 0 1 , Ο• 1 1 Functions
β–Ί
q -Binomial Series
β–Ί
q -Binomial Theorem
2: 26.9 Integer Partitions: Restricted Number and Part Size
β–Ί
26.9.4 [ m n ] q = j = 1 n 1 q m n + j 1 q j , n 0 ,
β–Ίis the Gaussian polynomial (or q -binomial coefficient); see also §§17.2(i)17.2(ii). … β–Ί
26.9.5 n = 0 p k ⁑ ( n ) ⁒ q n = j = 1 k 1 1 q j = 1 + m = 1 [ k + m 1 m ] q ⁒ q m ,
β–Ί β–Ί
26.9.7 m , n = 0 p k ⁑ ( m , n ) ⁒ x k ⁒ q n = 1 + k = 1 [ m + k k ] q ⁒ x k = j = 0 m 1 1 x ⁒ q j .
3: 17.2 Calculus
β–Ί
§17.2(ii) Binomial Coefficients
β–Ί
17.2.27 [ n m ] q = ( q ; q ) n ( q ; q ) m ⁒ ( q ; q ) n m = ( q n ; q ) m ⁒ ( 1 ) m ⁒ q n ⁒ m ( m 2 ) ( q ; q ) m ,
β–Ί β–Ί
§17.2(iii) Binomial Theorem
β–ΊWhen a = q m + 1 , where m is a nonnegative integer, (17.2.37) reduces to the q -binomial series
4: 26.10 Integer Partitions: Other Restrictions
β–Ί
Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
β–Ί β–Ίβ–Ίβ–Ί
p ⁑ ( π’Ÿ , n ) p ⁑ ( π’Ÿ ⁒ 2 , n ) p ⁑ ( π’Ÿ ⁒ 2 , T , n ) p ⁑ ( π’Ÿ ⁒ 3 , n )
20 64 31 20 18
β–Ί
β–Ί
26.10.3 ( 1 x ) ⁒ m , n = 0 p m ⁑ ( k , π’Ÿ , n ) ⁒ x m ⁒ q n = m = 0 k [ k m ] q ⁒ q m ⁒ ( m + 1 ) / 2 ⁒ x m = j = 1 k ( 1 + x ⁒ q j ) , | x | < 1 ,
5: Bibliography K
β–Ί
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • β–Ί
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • β–Ί
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • β–Ί
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • β–Ί
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 6: 17.3 q -Elementary and q -Special Functions
    β–Ί
    17.3.8 A m , s ⁑ ( q ) = q ( s m 2 ) + ( s 2 ) ⁒ j = 0 s ( 1 ) j ⁒ q ( j 2 ) ⁒ [ m + 1 j ] q ⁒ ( 1 q s j ) m ( 1 q ) m .
    β–Ί
    17.3.9 a m , s ⁑ ( q ) = q ( s 2 ) ⁒ ( 1 q ) s ( q ; q ) s ⁒ j = 0 s ( 1 ) j ⁒ q ( j 2 ) ⁒ [ s j ] q ⁒ ( 1 q s j ) m ( 1 q ) m .
    7: 26.16 Multiset Permutations
    β–Ί
    26.16.1 [ a 1 + a 2 + β‹― + a n a 1 , a 2 , , a n ] q = k = 1 n 1 [ a k + a k + 1 + β‹― + a n a k ] q ,
    8: 18.27 q -Hahn Class
    β–Ί
    18.27.4 y = 0 N Q n ⁑ ( q y ) ⁒ Q m ⁑ ( q y ) ⁒ [ N y ] q ⁒ ( α ⁒ q ; q ) y ⁒ ( β ⁒ q ; q ) N y ( α ⁒ q ) y = h n ⁒ δ n , m , n , m = 0 , 1 , , N ,
    β–Ί
    18.27.4_1 h n = ( α ⁒ q ) n ⁒ N 1 α ⁒ β ⁒ q 2 ⁒ n + 1 ⁒ ( α ⁒ β ⁒ q n + 1 ; q ) N + 1 ⁒ ( β ⁒ q ; q ) n [ N n ] q ⁒ ( α ⁒ q ; q ) n .
    9: 6.20 Approximations
    β–Ί
  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ⁑ ( x ) , with accuracies up to 20S.

  • β–Ί
  • Cody and Thacher (1969) provides minimax rational approximations for Ei ⁑ ( x ) , with accuracies up to 20S.

  • β–Ί
  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • β–Ί
    §6.20(ii) Expansions in Chebyshev Series
    β–Ί
  • Luke and Wimp (1963) covers Ei ⁑ ( x ) for x 4 (20D), and Si ⁑ ( x ) and Ci ⁑ ( x ) for x 4 (20D).

  • 10: 25.20 Approximations
    β–Ί
  • Cody et al. (1971) gives rational approximations for ΞΆ ⁑ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • β–Ί
  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ⁒ ΞΆ ⁑ ( s + 1 ) and ΞΆ ⁑ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • β–Ί
  • Luke (1969b, p. 306) gives coefficients in Chebyshev-series expansions that cover ΞΆ ⁑ ( s ) for 0 s 1 (15D), ΞΆ ⁑ ( s + 1 ) for 0 s 1 (20D), and ln ⁑ ΞΎ ⁑ ( 1 2 + i ⁒ x ) 25.4) for 1 x 1 (20D). For errata see Piessens and Branders (1972).

  • β–Ί
  • Antia (1993) gives minimax rational approximations for Ξ“ ⁑ ( s + 1 ) ⁒ F s ⁑ ( x ) , where F s ⁑ ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .