About the Project
NIST

q-Laguerre polynomials

AdvancedHelp

(0.005 seconds)

1—10 of 245 matching pages

1: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
§31.5 Solutions Analytic at Three Singularities: Heun Polynomials
31.5.2 Hp n , m ( a , q n , m ; - n , β , γ , δ ; z ) = H ( a , q n , m ; - n , β , γ , δ ; z )
is a polynomial of degree n , and hence a solution of (31.2.1) that is analytic at all three finite singularities 0 , 1 , a . These solutions are the Heun polynomials. …
2: 35.4 Partitions and Zonal Polynomials
§35.4 Partitions and Zonal Polynomials
Normalization
Orthogonal Invariance
Summation
Mean-Value
3: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
4: 18.3 Definitions
§18.3 Definitions
Table 18.3.1 provides the definitions of Jacobi, Laguerre, and Hermite polynomials via orthogonality and normalization (§§18.2(i) and 18.2(iii)). … For exact values of the coefficients of the Jacobi polynomials P n ( α , β ) ( x ) , the ultraspherical polynomials C n ( λ ) ( x ) , the Chebyshev polynomials T n ( x ) and U n ( x ) , the Legendre polynomials P n ( x ) , the Laguerre polynomials L n ( x ) , and the Hermite polynomials H n ( x ) , see Abramowitz and Stegun (1964, pp. 793–801). … For another version of the discrete orthogonality property of the polynomials T n ( x ) see (3.11.9). … Legendre polynomials are special cases of Legendre functions, Ferrers functions, and associated Legendre functions (§14.7(i)). …
5: 18.29 Asymptotic Approximations for q -Hahn and Askey–Wilson Classes
§18.29 Asymptotic Approximations for q -Hahn and Askey–Wilson Classes
Ismail (1986) gives asymptotic expansions as n , with x and other parameters fixed, for continuous q -ultraspherical, big and little q -Jacobi, and Askey–Wilson polynomials. …For Askey–Wilson p n ( cos θ ; a , b , c , d | q ) the leading term is given by … For a uniform asymptotic expansion of the Stieltjes–Wigert polynomials, see Wang and Wong (2006). For asymptotic approximations to the largest zeros of the q -Laguerre and continuous q - 1 -Hermite polynomials see Chen and Ismail (1998).
6: 18.27 q -Hahn Class
§18.27(ii) q -Hahn Polynomials
§18.27(iii) Big q -Jacobi Polynomials
§18.27(iv) Little q -Jacobi Polynomials
§18.27(v) q -Laguerre Polynomials
§18.27(vi) Stieltjes–Wigert Polynomials
7: 24.18 Physical Applications
§24.18 Physical Applications
Bernoulli polynomials appear in statistical physics (Ordóñez and Driebe (1996)), in discussions of Casimir forces (Li et al. (1991)), and in a study of quark-gluon plasma (Meisinger et al. (2002)). Euler polynomials also appear in statistical physics as well as in semi-classical approximations to quantum probability distributions (Ballentine and McRae (1998)).
8: 24.3 Graphs
See accompanying text
Figure 24.3.1: Bernoulli polynomials B n ( x ) , n = 2 , 3 , , 6 . Magnify
See accompanying text
Figure 24.3.2: Euler polynomials E n ( x ) , n = 2 , 3 , , 6 . Magnify
9: 18.4 Graphics
See accompanying text
Figure 18.4.1: Jacobi polynomials P n ( 1.5 , - 0.5 ) ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
See accompanying text
Figure 18.4.2: Jacobi polynomials P n ( 1.25 , 0.75 ) ( x ) , n = 7 , 8 . … Magnify
See accompanying text
Figure 18.4.4: Legendre polynomials P n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
See accompanying text
Figure 18.4.5: Laguerre polynomials L n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
See accompanying text
Figure 18.4.7: Monic Hermite polynomials h n ( x ) = 2 - n H n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
10: 18.7 Interrelations and Limit Relations
§18.7 Interrelations and Limit Relations
§18.7(i) Linear Transformations
Chebyshev, Ultraspherical, and Jacobi
Legendre, Ultraspherical, and Jacobi