q-Bernoulli polynomials
♦
4 matching pages ♦
(0.001 seconds)
4 matching pages
1: 17.3 -Elementary and -Special Functions
2: Bibliography C
…
βΊ
Some congruences for the Bernoulli numbers.
Amer. J. Math. 75 (1), pp. 163–172.
βΊ
-Bernoulli and Eulerian numbers.
Trans. Amer. Math. Soc. 76 (2), pp. 332–350.
βΊ
A note on Euler numbers and polynomials.
Nagoya Math. J. 7, pp. 35–43.
βΊ
Expansions of -Bernoulli numbers.
Duke Math. J. 25 (2), pp. 355–364.
…
βΊ
Accélération de calcul de nombres de Bernoulli.
J. Number Theory 28 (3), pp. 347–362 (French).
…
3: 24.16 Generalizations
…
βΊIn no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); -adic integer order Bernoulli numbers (Adelberg (1996)); -adic -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).
4: Bibliography K
…
βΊ
Poly-Bernoulli numbers.
J. Théor. Nombres Bordeaux 9 (1), pp. 221–228.
…
βΊ
On formulas involving both the Bernoulli and Fibonacci numbers.
Scripta Math. 23, pp. 27–35.
…
βΊ
Remark on -adic -Bernoulli numbers.
Adv. Stud. Contemp. Math. (Pusan) 1, pp. 127–136.
…
βΊ
On the degree of an irreducible factor of the Bernoulli polynomials.
Acta Arith. 50 (3), pp. 243–249.
…
βΊ
The Askey-scheme of hypergeometric orthogonal polynomials and its -analogue.
Technical report
Technical Report 98-17, Delft University of Technology,
Faculty of Information Technology and Systems,
Department of Technical Mathematics and Informatics.
…