About the Project

psi function

AdvancedHelp

(0.007 seconds)

21—30 of 102 matching pages

21: 15.4 Special Cases
§15.4(iii) Other Arguments
15.4.27 F ( 1 , a ; a + 1 ; 1 ) = 2 a F ( a , a ; a + 1 ; 1 2 ) = 1 2 a ( ψ ( 1 2 a + 1 2 ) ψ ( 1 2 a ) ) .
22: 36.11 Leading-Order Asymptotics
36.11.3 Ψ 2 ( 0 , y ) = { π / y ( exp ( 1 4 i π ) + o ( 1 ) ) , y + , π / | y | exp ( 1 4 i π ) ( 1 + i 2 exp ( 1 4 i y 2 ) + o ( 1 ) ) , y .
36.11.4 Ψ 3 ( x , 0 , 0 ) = 2 π ( 5 | x | 3 ) 1 / 8 { exp ( 2 2 ( x / 5 ) 5 / 4 ) ( cos ( 2 2 ( x / 5 ) 5 / 4 1 8 π ) + o ( 1 ) ) , x + , cos ( 4 ( | x | / 5 ) 5 / 4 1 4 π ) + o ( 1 ) , x .
36.11.5 Ψ 3 ( 0 , y , 0 ) = Ψ 3 ( 0 , y , 0 ) ¯ = exp ( 1 4 i π ) π / y ( 1 ( i / 3 ) exp ( 3 2 i ( 2 y / 5 ) 5 / 3 ) + o ( 1 ) ) , y + .
36.11.6 Ψ 3 ( 0 , 0 , z ) = Γ ( 1 3 ) | z | 1 / 3 3 + { o ( 1 ) , z + , 2 π 5 1 / 4 ( 3 | z | ) 3 / 4 ( cos ( 2 3 ( 3 | z | 5 ) 5 / 2 1 4 π ) + o ( 1 ) ) , z .
36.11.8 Ψ ( H ) ( 0 , 0 , z ) = 2 π z ( 1 i 3 exp ( 1 27 i z 3 ) + o ( 1 ) ) , z ± .
23: 5.18 q -Gamma and q -Beta Functions
For the q -digamma or q -psi function ψ q ( z ) = Γ q ( z ) / Γ q ( z ) see Salem (2013). …
24: 5.9 Integral Representations
§5.9(ii) Psi Function, Euler’s Constant, and Derivatives
5.9.12 ψ ( z ) = 0 ( e t t e z t 1 e t ) d t ,
5.9.13 ψ ( z ) = ln z + 0 ( 1 t 1 1 e t ) e t z d t ,
5.9.14 ψ ( z ) = 0 ( e t 1 ( 1 + t ) z ) d t t ,
5.9.15 ψ ( z ) = ln z 1 2 z 2 0 t d t ( t 2 + z 2 ) ( e 2 π t 1 ) .
25: 25.8 Sums
25.8.5 k = 2 ζ ( k ) z k = γ z z ψ ( 1 z ) , | z | < 1 .
26: 17.10 Transformations of ψ r r Functions
§17.10 Transformations of ψ r r Functions
17.10.1 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , d / a , c / b , d q / ( a b z ) ; q ) ( z , d , q / b , c d / ( a b z ) ; q ) ψ 2 2 ( a , a b z / d a z , c ; q , d a ) ,
17.10.2 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , b z , c q / ( a b z ) , d q / ( a b z ) ; q ) ( q / a , q / b , c , d ; q ) ψ 2 2 ( a b z / c , a b z / d a z , b z ; q , c d a b z ) .
17.10.5 ( a q / b , a q / c , a q / d , a q / e , q / ( a b ) , q / ( a c ) , q / ( a d ) , q / ( a e ) ; q ) ( f a , g a , f / a , g / a , q a 2 , q / a 2 ; q ) ψ 8 8 ( q a , q a , b a , c a , d a , e a , f a , g a a , a , a q / b , a q / c , a q / d , a q / e , a q / f , a q / g ; q , q 2 b c d e f g ) = ( q , q / ( b f ) , q / ( c f ) , q / ( d f ) , q / ( e f ) , q f / b , q f / c , q f / d , q f / e ; q ) ( f a , q / ( f a ) , a q / f , f / a , g / f , f g , q f 2 ; q ) ϕ 7 8 ( f 2 , q f , q f , f b , f c , f d , f e , f g f , f , f q / b , f q / c , f q / d , f q / e , f q / g ; q , q 2 b c d e f g ) + idem ( f ; g ) .
17.10.6 ( a q / b , a q / c , a q / d , a q / e , a q / f , q / ( a b ) , q / ( a c ) , q / ( a d ) , q / ( a e ) , q / ( a f ) ; q ) ( a g , a h , a k , g / a , h / a , k / a , q a 2 , q / a 2 ; q ) ψ 10 10 ( q a , q a , b a , c a , d a , e a , f a , g a , h a , k a a , a , a q / b , a q / c , a q / d , a q / e , a q / f , a q / g , a q / h , a q / k ; q , q 2 b c d e f g h k ) = ( q , q / ( b g ) , q / ( c g ) , q / ( d g ) , q / ( e g ) , q / ( f g ) , q g / b , q g / c , q g / d , q g / e , q g / f ; q ) ( g h , g k , h / g , a g , q / ( a g ) , g / a , a q / g , q g 2 ; q ) ϕ 9 10 ( g 2 , q g , q g , g b , g c , g d , g e , g f , g h , g k g , g , q g / b , q g / c , q g / d , q g / e , q g / f , q g / h , q g / k ; q , q 2 b c d e f g h k ) + idem ( g ; h , k ) .
27: 10.38 Derivatives with Respect to Order
10.38.1 I ± ν ( z ) ν = ± I ± ν ( z ) ln ( 1 2 z ) ( 1 2 z ) ± ν k = 0 ψ ( k + 1 ± ν ) Γ ( k + 1 ± ν ) ( 1 4 z 2 ) k k ! ,
28: 5.11 Asymptotic Expansions
and
5.11.2 ψ ( z ) ln z 1 2 z k = 1 B 2 k 2 k z 2 k .
29: 4.12 Generalized Logarithms and Exponentials
It, too, is strictly increasing when 0 x 1 , and …
4.12.9 ψ ( x ) = + ln ln  times x , x > 1 ,
30: 36.8 Convergent Series Expansions
36.8.3 3 2 / 3 4 π 2 Ψ ( H ) ( 3 1 / 3 𝐱 ) = Ai ( x ) Ai ( y ) n = 0 ( 3 1 / 3 i z ) n c n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n c n ( x ) d n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n d n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 1 ( 3 1 / 3 i z ) n d n ( x ) d n ( y ) n ! ,
36.8.4 Ψ ( E ) ( 𝐱 ) = 2 π 2 ( 2 3 ) 2 / 3 n = 0 ( i ( 2 / 3 ) 2 / 3 z ) n n ! ( f n ( x + i y 12 1 / 3 , x i y 12 1 / 3 ) ) ,