About the Project
NIST

products of Bessel functions

AdvancedHelp

(0.007 seconds)

1—10 of 45 matching pages

1: 10.28 Wronskians and Cross-Products
§10.28 Wronskians and Cross-Products
2: 10.5 Wronskians and Cross-Products
§10.5 Wronskians and Cross-Products
3: 10.50 Wronskians and Cross-Products
§10.50 Wronskians and Cross-Products
4: 10.6 Recurrence Relations and Derivatives
§10.6(iii) Cross-Products
5: 30.10 Series and Integrals
For expansions in products of spherical Bessel functions, see Flammer (1957, Chapter 6).
6: 28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
§28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
For further power series of Mathieu radial functions of integer order for small parameters and improved convergence rate see Larsen et al. (2009).
7: Bibliography C
  • J. A. Cochran (1964) Remarks on the zeros of cross-product Bessel functions. J. Soc. Indust. Appl. Math. 12 (3), pp. 580–587.
  • J. A. Cochran (1966a) The analyticity of cross-product Bessel function zeros. Proc. Cambridge Philos. Soc. 62, pp. 215–226.
  • J. A. Cochran (1966b) The asymptotic nature of zeros of cross-product Bessel functions. Quart. J. Mech. Appl. Math. 19 (4), pp. 511–522.
  • 8: 10.74 Methods of Computation
    For infinite integrals involving products of Bessel functions of the first kind, see Linz and Kropp (1973), Gabutti (1980), Ikonomou et al. (1995), Lucas (1995), and Van Deun and Cools (2008). For infinite integrals involving products of Bessel functions of the first and second kinds, see Ratnanather et al. (2014). …
    9: Bibliography I
  • M. Ikonomou, P. Köhler, and A. F. Jacob (1995) Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines. Z. Angew. Math. Mech. 75 (12), pp. 917–926.
  • 10: Bibliography R
  • J. T. Ratnanather, J. H. Kim, S. Zhang, A. M. J. Davis, and S. K. Lucas (2014) Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions. ACM Trans. Math. Softw. 40 (2), pp. 14:1–14:12.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.