About the Project

principal branches (or values)

AdvancedHelp

(0.003 seconds)

11—20 of 178 matching pages

11: 6.14 Integrals
6.14.1 0 e a t E 1 ( t ) d t = 1 a ln ( 1 + a ) , a > 1 ,
6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
6.14.7 0 Ci ( t ) si ( t ) d t = ln 2 .
12: 10.2 Definitions
§10.2(ii) Standard Solutions
The principal branch corresponds to the principal branches of J ± ν ( z ) in (10.2.3) and (10.2.4), with a cut in the z -plane along the interval ( , 0 ] . … The principal branches correspond to principal values of the square roots in (10.2.5) and (10.2.6), again with a cut in the z -plane along the interval ( , 0 ] . …
Table 10.2.1: Numerically satisfactory pairs of solutions of Bessel’s equation.
Pair Interval or Region
13: 4.3 Graphics
Figure 4.3.2 illustrates the conformal mapping of the strip π < z < π onto the whole w -plane cut along the negative real axis, where w = e z and z = ln w (principal value). …
See accompanying text
Figure 4.3.3: ln ( x + i y ) (principal value). There is a branch cut along the negative real axis. Magnify 3D Help
14: 2.2 Transcendental Equations
2.2.3 t 2 ln t = y .
2.2.5 t 2 = y + ln t = y + 1 2 ln y + o ( 1 ) ,
2.2.6 t = y 1 2 ( 1 + 1 4 y 1 ln y + o ( y 1 ) ) , y .
15: 4.12 Generalized Logarithms and Exponentials
4.12.6 ϕ ( x ) = ln ( x + 1 ) , 1 < x < 0 ,
4.12.9 ψ ( x ) = + ln ln  times x , x > 1 ,
4.12.10 0 ln ln times x < 1 .
16: 27.11 Asymptotic Formulas: Partial Sums
27.11.2 n x d ( n ) = x ln x + ( 2 γ 1 ) x + O ( x ) ,
27.11.3 n x d ( n ) n = 1 2 ( ln x ) 2 + 2 γ ln x + O ( 1 ) ,
27.11.6 n x ϕ ( n ) = 3 π 2 x 2 + O ( x ln x ) .
27.11.7 n x ϕ ( n ) n = 6 π 2 x + O ( ln x ) .
27.11.8 p x 1 p = ln ln x + A + O ( 1 ln x ) ,
17: 27.12 Asymptotic Formulas: Primes
27.12.1 lim n p n n ln n = 1 ,
27.12.2 p n > n ln n , n = 1 , 2 , .
27.12.4 π ( x ) k = 1 ( k 1 ) ! x ( ln x ) k .
27.12.5 | π ( x ) li ( x ) | = O ( x exp ( c ( ln x ) 1 / 2 ) ) , x .
27.12.7 | π ( x ) li ( x ) | < 1 8 π x ln x .
18: 4.4 Special Values and Limits
4.4.1 ln 1 = 0 ,
4.4.2 ln ( 1 ± i 0 ) = ± π i ,
4.4.3 ln ( ± i ) = ± 1 2 π i .
4.4.13 lim x x a ln x = 0 , a > 0 ,
4.4.14 lim x 0 x a ln x = 0 , a > 0 ,
19: 4.40 Integrals
4.40.4 csch x d x = ln ( tanh ( 1 2 x ) ) , 0 < x < .
4.40.6 coth x d x = ln ( sinh x ) , 0 < x < .
4.40.10 0 tanh ( a x ) tanh ( b x ) x d x = ln ( a b ) , a > 0 , b > 0 .
4.40.13 arctanh x d x = x arctanh x + 1 2 ln ( 1 x 2 ) , 1 < x < 1 ,
20: 4.37 Inverse Hyperbolic Functions
The principal values (or principal branches) of the inverse sinh , cosh , and tanh are obtained by introducing cuts in the z -plane as indicated in Figure 4.37.1(i)-(iii), and requiring the integration paths in (4.37.1)–(4.37.3) not to cross these cuts. …The principal branches are denoted by arcsinh , arccosh , arctanh respectively. …
4.37.20 arccosh ( i y ) = ± 1 2 π i + ln ( ( y 2 + 1 ) 1 / 2 ± y ) , y 0 .
4.37.22 arccosh x = ± ln ( i ( 1 x 2 ) 1 / 2 + x ) , x ( 1 , 1 ] ,